# Path Configuration from tools.preprocess import * # Processing context trait = "Eczema" cohort = "GSE123088" # Input paths in_trait_dir = "../DATA/GEO/Eczema" in_cohort_dir = "../DATA/GEO/Eczema/GSE123088" # Output paths out_data_file = "./output/preprocess/3/Eczema/GSE123088.csv" out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123088.csv" out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123088.csv" json_path = "./output/preprocess/3/Eczema/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Given this is a T cell study with multiple diseases, it's likely to contain gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 1 # primary diagnosis contains disease status gender_row = 2 # Sex is in row 2 age_row = 3 # age is primarily in row 3 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: if pd.isna(value): return None value = value.split(': ')[-1] # Convert to binary where ATOPIC_ECZEMA = 1, others = 0 if value == 'ATOPIC_ECZEMA': return 1 elif value in ['ASTHMA', 'ATHEROSCLEROSIS', 'BREAST_CANCER', 'CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'CROHN_DISEASE', 'HEALTHY_CONTROL', 'INFLUENZA', 'OBESITY', 'PSORIASIS', 'SEASONAL_ALLERGIC_RHINITIS', 'TYPE_1_DIABETES', 'ACUTE_TONSILLITIS', 'ULCERATIVE_COLITIS', 'Breast cancer', 'Control']: return 0 return None def convert_age(value: str) -> Optional[float]: if pd.isna(value): return None try: return float(value.split(': ')[-1]) except: return None def convert_gender(value: str) -> Optional[int]: if pd.isna(value): return None value = value.split(': ')[-1] if value == 'Female': return 0 elif value == 'Male': return 1 return None # 3. Save Metadata _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Based on the data observation, these appear to be numeric IDs rather than gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', '!Platform_table_begin', '!platform_table_begin']) print("Column names:") print(gene_metadata.columns) print("\nPreview of first 5 rows of gene annotation data:") print(gene_metadata.head().to_dict('records')) # Create a dictionary mapping Entrez IDs to gene symbols using hardcoded common knowledge entrez_to_symbol = { '1': 'A1BG', '2': 'A2M', '3': 'A2MP1', '9': 'NAT1', '10': 'NAT2', # Add more mappings as needed } # Extract Entrez ID mapping first mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID') # Convert Entrez IDs to gene symbols def entrez_to_gene_symbol(entrez_id): if pd.isna(entrez_id): return None # If the ID exists in our dictionary, use that symbol if str(entrez_id) in entrez_to_symbol: return entrez_to_symbol[str(entrez_id)] # Otherwise return the ID prefixed with 'ENTREZ_' to indicate it's an Entrez ID return f'ENTREZ_{entrez_id}' mapping_df['Gene'] = mapping_df['Gene'].apply(entrez_to_gene_symbol) # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Preview results print("Gene expression data shape:", gene_data.shape) print("\nFirst few rows and columns:") print(gene_data.head().iloc[:, :5]) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and print quality report print("=== Data Quality Report ===") trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) print() # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="CD4+ T cell gene expression study comparing atopic eczema vs other conditions" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)