# Path Configuration from tools.preprocess import * # Processing context trait = "Eczema" cohort = "GSE150797" # Input paths in_trait_dir = "../DATA/GEO/Eczema" in_cohort_dir = "../DATA/GEO/Eczema/GSE150797" # Output paths out_data_file = "./output/preprocess/3/Eczema/GSE150797.csv" out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE150797.csv" out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE150797.csv" json_path = "./output/preprocess/3/Eczema/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Yes, microarray data (Affymetrix) is available according to background info is_gene_available = True # 2. Variable Availability and Type Conversion trait_row = 2 # treatment status indicates disease severity age_row = None # age not provided gender_row = 1 # gender is available def convert_trait(value: str) -> Optional[int]: """Convert treatment status to disease severity binary""" if not isinstance(value, str): return None value = value.split(": ")[-1].lower().strip() if "untreated" in value: return 1 # Active disease elif "treated" in value or "nb-uvb" in value: return 0 # Treated/controlled disease return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary (0=female, 1=male)""" if not isinstance(value, str): return None value = value.split(": ")[-1].lower().strip() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Initial Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_df) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # These identifiers appear to be Affymetrix probeset IDs (TC identifiers followed by .hg.1) # They need to be mapped to standard human gene symbols requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Function to extract gene symbol from the text description def extract_gene_symbol(text): if not isinstance(text, str): return None # Look for RefSeq gene name refseq_match = re.search(r'RefSeq // Homo sapiens ([\w\-]+) \(', text) if refseq_match: return refseq_match.group(1) # Look for ENSEMBL gene name ensembl_match = re.search(r'ENSEMBL // ([\w\-]+) \[', text) if ensembl_match: return ensembl_match.group(1) # Look for gene name with HGNC Symbol hgnc_match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([\w\-]+)', text) if hgnc_match: return hgnc_match.group(1) return None # Add gene symbol column and create mapping dataframe gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol) gene_mapping = gene_metadata[['ID', 'Gene_Symbol']].dropna() gene_mapping = gene_mapping.rename(columns={'Gene_Symbol': 'Gene'}) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene mapping data:") print(preview_df(gene_mapping)) # Print mapping statistics n_total = len(gene_metadata) n_mapped = len(gene_mapping) print(f"\nTotal probes: {n_total}") print(f"Probes mapped to gene symbols: {n_mapped} ({n_mapped/n_total:.1%})") # Based on the preview, refine the gene mapping strategy # Extract probes from SOFT file annotations with better gene symbol extraction gene_metadata = get_gene_annotation(soft_file) def extract_gene_symbol(text): if not isinstance(text, str): return None # Look for RefSeq gene name refseq_match = re.search(r'RefSeq.*?//(.*?)\[', text) if refseq_match: symbol = refseq_match.group(1).strip() if not symbol.startswith(('LOC', 'LINC')): return symbol # Look for HGNC Symbol hgnc_match = re.search(r'HGNC.*?//(.*?)\[', text) if hgnc_match: return hgnc_match.group(1).strip() return None # Create mapping dataframe with probe IDs and gene symbols gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol) mapping_df = gene_metadata[['ID', 'Gene']].dropna() # Apply gene mapping to convert probe-level data to gene-level expression gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the results print("Gene mapping statistics:") print(f"Total probes: {len(genetic_df)}") print(f"Probes mapped to genes: {len(mapping_df)}") print(f"Final unique genes: {len(gene_data)}") print("\nPreview of gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)