# Path Configuration from tools.preprocess import * # Processing context trait = "Eczema" cohort = "GSE63741" # Input paths in_trait_dir = "../DATA/GEO/Eczema" in_cohort_dir = "../DATA/GEO/Eczema/GSE63741" # Output paths out_data_file = "./output/preprocess/3/Eczema/GSE63741.csv" out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE63741.csv" out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE63741.csv" json_path = "./output/preprocess/3/Eczema/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on series title and summary mentioning gene expression analyses, and design mentioning total RNA is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Looking at sample characteristics: # The trait (eczema) status can't be determined from any single row, but needs to be inferred from the descriptions # 'Contact Eczema (KE)' vs others mentioned in the background trait_row = 1 # No age info age_row = None # No gender info gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert disease type to binary trait indicator 1: Contact Eczema (KE), 0: other conditions/healthy""" if not isinstance(value, str): return None value = value.lower() if "contact eczema" in value or "ke" in value: return 1 elif any(x in value for x in ["psoriasis", "atopic dermatitis", "lichen planus", "healthy", "control"]): return 0 return None def convert_age(value: str) -> Optional[float]: """Not used as age data not available""" return None def convert_gender(value: str) -> Optional[int]: """Not used as gender data not available""" return None # 3. Save Metadata # Initial filtering - only checking data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The IDs shown in the gene expression data are probe IDs from a microarray platform # They need to be mapped to standard human gene symbols for downstream analysis requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Looking at the data: # - Gene expression data uses numeric IDs in the 'ID' column # - Gene annotation data has corresponding IDs in the 'ID' column # - The 'description' field contains gene symbols at the start before colon # 2. Extract gene mapping # Extract gene symbol from description field (text before colon) gene_metadata['Gene'] = gene_metadata['description'].str.extract(r'^([^:]+):', expand=False) # Some cleanup of gene symbols: remove parentheses content and whitespace gene_metadata['Gene'] = gene_metadata['Gene'].str.replace(r'\s*\([^)]*\)', '', regex=True).str.strip() # Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene') # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview print("Gene expression data shape:", gene_data.shape) print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # Fix trait values based on background information before linking sample_order = list(gene_data.columns) # Get sample order from gene data sample_groups = { 'Contact Eczema': range(0, 30), # First 30 samples 'Control': range(30, 150) # Remaining samples } # Create new trait series with corrected values trait_values = pd.Series(0, index=sample_order) # Initialize all as controls trait_values.iloc[sample_groups['Contact Eczema']] = 1 # Set contact eczema cases clinical_data.iloc[0] = trait_values # Replace original trait row linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study about inflammatory skin diseases including contact eczema, atopic dermatitis, lichen planus, psoriasis and healthy controls." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)