# Path Configuration from tools.preprocess import * # Processing context trait = "Eczema" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Eczema/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Eczema/cohort_info.json" # Get GBMLGG cohort directory path (contains eczema data based on column names) cohort_dir = os.path.join(tcga_root_dir, "TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)") # Get clinical and genetic file paths clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load clinical and genetic data clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0) genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0) # Print clinical data columns print("\nClinical data columns:") print(clinical_df.columns.tolist()) # Record data availability in metadata validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available='eczema_history' in clinical_df.columns ) # Step 1: Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy'] candidate_gender_cols = ['gender'] # Step 2: Choose BRCA cohort and preview data cohort_dir = os.path.join(tcga_root_dir, "TCGA_Breast_Cancer_(BRCA)") clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview age columns age_preview = clinical_df[candidate_age_cols].head(5).to_dict(orient='list') print("\nAge columns preview:") print(age_preview) # Extract and preview gender columns gender_preview = clinical_df[candidate_gender_cols].head(5).to_dict(orient='list') print("\nGender columns preview:") print(gender_preview) # Debug directory contents first print("Directory contents:") print(os.listdir(tcga_root_dir)) # Try printing sample files from each subdirectory for subdir in os.listdir(tcga_root_dir): full_path = os.path.join(tcga_root_dir, subdir) if os.path.isdir(full_path): print(f"\nFiles in {subdir}:") print(os.listdir(full_path)[:5]) # Show first 5 files # Look at first cohort to examine column names first_cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)') clinical_file, _ = tcga_get_relevant_filepaths(first_cohort_dir) clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0) # Preview clinical data columns candidate_age_cols = ['_age_at_initial_pathologic_diagnosis', 'age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Preview values age_df = clinical_df[candidate_age_cols[0] if candidate_age_cols[0] in clinical_df.columns else candidate_age_cols[1]] gender_df = clinical_df[candidate_gender_cols[0]] print("Age column preview:") print(preview_df(pd.DataFrame(age_df))) print("\nGender column preview:") print(preview_df(pd.DataFrame(gender_df))) # Select columns for demographic features age_col = "age_at_initial_pathologic_diagnosis" # Contains valid numeric age values gender_col = "gender" # Contains valid gender values # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # Extract clinical features (trait labels from sample IDs, age, and gender) clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col="age_at_initial_pathologic_diagnosis", gender_col="gender" ) # Save processed clinical data clinical_features.to_csv(out_clinical_data_file) # Normalize gene symbols in genetic data and save normalized_gene_data = normalize_gene_symbols_in_index(genetic_df) normalized_gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = pd.merge( clinical_features, normalized_gene_data.T, left_index=True, right_index=True, how='inner' ) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check if trait or demographic features are biased and remove biased demographics is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Final validation and save metadata notes = "Using TCGA lower grade glioma and glioblastoma (GBMLGG) data. Normal samples serve as controls, tumor samples as disease cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=linked_data, note=notes ) # Save processed data if usable if is_usable: linked_data.to_csv(out_data_file)