# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE40785" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE40785" # Output paths out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE40785.csv" out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE40785.csv" out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE40785.csv" json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is gene expression data on cancer cell lines is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Endometrioid Cancer) can be inferred from histology field (row 1) trait_row = 1 # Age and gender not available age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value): # Extract value after colon if present if ':' in str(value): value = value.split(':')[1].strip() # Look for endometrioid in histology if 'Endometrioid' in str(value): return 1 elif pd.isna(value): return None else: return 0 def convert_age(value): return None # Not used since age not available def convert_gender(value): return None # Not used since gender not available # 3. Save Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of clinical features:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The IDs starting with "ILMN_" are Illumina probe IDs, not gene symbols. # These need to be mapped to HUGO gene symbols for standardization. requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. Identify mapping columns # 'ID' column in annotation contains Illumina probe IDs (ILMN_*) matching gene expression data # 'Symbol' column contains gene symbols # 2. Get gene mapping dataframe mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # 3. Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)