# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE65986" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE65986" # Output paths out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE65986.csv" out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE65986.csv" out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE65986.csv" json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability # From background info: "Gene expression in 55 epithelial ovarian cancers ... was analyzed by Affymetrix U133plus2 array" is_gene_available = True # 2.1 Data availability # For trait (Endometrioid_Cancer): # Key 0 has cancer histology types including "Endometrioid" trait_row = 0 # For age: # Key 1 has age values age_row = 1 # For gender: # No gender info in characteristics, all samples appear to be female based on ovarian cancer study gender_row = None # 2.2 Data type conversion functions def convert_trait(x): if not isinstance(x, str): return None x = x.split(': ')[1].lower() if ': ' in x else x.lower() if 'endometrioid' in x: return 1 elif x in ['clear', 'serous']: # Other cancer types return 0 return None def convert_age(x): if not isinstance(x, str): return None try: return float(x.split(': ')[1]) except: return None def convert_gender(x): return None # No gender data # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview_result = preview_df(selected_clinical) print("Preview of processed clinical data:") print(preview_result) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Based on the gene expression data preview: # The identifiers shown are probe IDs from Affymetrix microarray platform # (e.g., '1007_s_at', '1053_at' are typical Affymetrix probe formats) # These need to be mapped to human gene symbols for standardization requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. The 'ID' column in gene_metadata contains probe IDs (e.g., '1007_s_at') matching the gene expression data indices, # and 'Gene Symbol' column contains the corresponding gene symbols prob_col = 'ID' gene_col = 'Gene Symbol' # 2. Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview first few rows print("Gene expression data shape:", gene_data.shape) print("\nPreview of first few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)