# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE68600" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE68600" # Output paths out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE68600.csv" out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE68600.csv" out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE68600.csv" json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # Gene expression data availability - Yes, as indicated by !Series_title about gene expression data and Affymetrix array is_gene_available = True # Variable availability # Trait - Row 4 contains histological types. Endometrioid type indicates trait presence trait_row = 4 # Age - Not available in sample characteristics age_row = None # Gender - Row 0 contains gender info but all samples are female (F), so not useful gender_row = None def convert_trait(value): """Convert histology type to binary for endometrioid cancer""" if pd.isna(value) or not isinstance(value, str): return None value = value.lower().split(": ")[-1] # Positive if endometrioid is mentioned in histology if "endometrioid" in value: return 1 # Other histology types are negative return 0 # Age conversion function not needed since age data unavailable convert_age = None # Gender conversion function not needed since all samples are female convert_gender = None # Save metadata - is_trait_available determined by trait_row being not None is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Extract clinical features since trait data is available clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted clinical data preview_dict = preview_df(clinical_df) print("Preview of clinical data:") print(preview_dict) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The identifiers like 'A28102_at', 'AB000114_at' etc. appear to be Affymetrix probe IDs # rather than human gene symbols. These will need to be mapped to standard gene symbols. requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Get gene mapping dataframe from annotation data # 'ID' stores probe IDs matching gene expression data # 'Gene Symbol' stores corresponding gene symbols mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape of gene expression data after mapping print("Gene expression data shape after mapping:", gene_data.shape) print("\nPreview of first few rows and columns:") print(gene_data.iloc[:5, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)