# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE73637" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73637" # Output paths out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73637.csv" out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73637.csv" out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73637.csv" json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From series title and design, this appears to be gene expression data from cell lines is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Rows # Trait (Endometrioid) can be determined from histopathology in row 3 trait_row = 3 # Age and gender not available for cell lines age_row = None gender_row = None # 2.2 Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert histopathology to binary trait""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'endometrioid' in value: return 1 # For cases where we can be sure it's not endometrioid if any(x in value for x in ['serous', 'clear cell', 'undifferentiated']): return 0 return None def convert_age(value: str) -> Optional[float]: """Placeholder function since age data not available""" return None def convert_gender(value: str) -> Optional[int]: """Placeholder function since gender data not available""" return None # 3. Save metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Given that the row identifiers are simply numerical indices (1, 2, 3, etc) rather than # recognizable gene symbols like BRCA1, TP53, etc., we need to perform gene mapping requires_gene_mapping = True # Extract gene annotation data with proper handling filtered_lines = [] with gzip.open(soft_file, 'rt') as f: for line in f: if not any(line.startswith(prefix) for prefix in ['^', '!', '#']): filtered_lines.append(line.strip()) # Preview the structure of filtered lines print("Sample of filtered lines:") for line in filtered_lines[:5]: print(line) if filtered_lines: # Try to create DataFrame from filtered lines try: df_text = '\n'.join(filtered_lines) gene_metadata = pd.read_csv(io.StringIO(df_text), sep='\t', engine='python', on_bad_lines='skip') print("\nColumn names:") print(gene_metadata.columns) print("\nPreview:") print(preview_df(gene_metadata)) except Exception as e: print(f"Error creating DataFrame: {str(e)}") # The gene expression data uses numerical IDs that match the 'ID' column in gene annotation # The 'GeneSymbol' column contains the gene symbols we want to map to mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneSymbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape and preview to verify the mapping print("Gene expression data shape:", gene_data.shape) print("\nPreview of first few rows and columns:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)