# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE145702" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE145702" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/GSE145702.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE145702.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE145702.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Dataset contains gene transcription data # 2.1 Data Availability & 2.2 Data Type Conversion # Trait (Endometriosis) trait_row = 2 # Found in 'disease state' row def convert_trait(x): if pd.isna(x) or ':' not in x: return None value = x.split(': ')[1].strip() if 'Normal' in value: return 0 elif 'Endometriosis' in value: return 1 return None # Gender - constant feature (all female) gender_row = None def convert_gender(x): return None # Age - not available age_row = None def convert_age(x): return None # 3. Save Metadata is_initial_valid = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the gene identifiers shown (7892501, 7892502, etc.), these appear to be Illumina BeadArray probe IDs # rather than standard human gene symbols. They need to be mapped to their corresponding gene symbols. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract probe ID to gene symbol mapping mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment') # Apply mapping to convert probe measurements to gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the mapped data print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) print("\nFirst few gene symbols:") print(gene_data.index[:20]) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_features = clinical_features.T # Transpose to align with gene data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Yes, this dataset studies gene transcription and contains genome-wide data is_gene_available = True # 2. Data Availability and Conversion Functions # 2.1 Row identifiers trait_row = 2 # disease state gender_row = 0 # gender information is available but is constant (all Female) age_row = None # no age information available # 2.2 Conversion Functions def convert_trait(value: str) -> Optional[int]: """Convert disease state to binary: 1 for Endometriosis, 0 for Normal""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'endometriosis' in value: return 1 elif 'normal' in value: return 0 return None def convert_gender(value: str) -> Optional[int]: """Convert gender to binary: 0 for Female, 1 for Male""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # No convert_age function needed since age data is not available # 3. Save Metadata # Initial filtering - only checks data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction # Since trait_row is not None, we need to extract clinical features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data print("Preview of processed clinical data:") print(preview_df(selected_clinical)) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Re-extract clinical features and link with genetic data selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells." ) # 6. Save if usable if is_usable: linked_data.to_csv(out_data_file)