# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Endometriosis/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Endometriosis/cohort_info.json" # Select UCEC cohort as it's related to endometrial conditions selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" cohort_dir = os.path.join(tcga_root_dir, selected_cohort) # Get file paths for clinical and genetic data clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Check directory and files import os cohort_dir = os.path.join(tcga_root_dir, "TCGA_Endometrioid_Cancer_(UCEC)") # Read the clinical data file clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview candidate age columns age_preview = {} if candidate_age_cols: age_data = clinical_df[candidate_age_cols] age_preview = preview_df(age_data) print("\nAge column preview:") print(age_preview) # Extract and preview candidate gender columns gender_preview = {} if candidate_gender_cols: gender_data = clinical_df[candidate_gender_cols] gender_preview = preview_df(gender_data) print("\nGender column preview:") print(gender_preview) candidate_age_cols = ["_AGE", "AGE", "age", "Age", "age_at_initial_pathologic_diagnosis"] candidate_gender_cols = ["_GENDER", "GENDER", "gender", "Gender", "SEX", "sex", "Sex"] # Since we have defined candidate columns but don't have clinical data to preview yet, # keep empty placeholders for preview variables age_preview = {} gender_preview = {} # Since we need the candidate columns and their preview values from the previous step, # we should raise an error to indicate missing required input raise ValueError("Missing required input: Need candidate demographic columns and their preview values from the previous step to make informed column selection.") # Select UCEC cohort as it's related to endometrial conditions selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" cohort_dir = os.path.join(tcga_root_dir, selected_cohort) # Get file paths for clinical and genetic data clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Get data files directly from root directory clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) # Read clinical data clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Extract and preview age columns if any exist if candidate_age_cols: age_preview = clinical_df[candidate_age_cols].head().to_dict('list') print("Age columns preview:", age_preview) # Extract and preview gender columns if any exist if candidate_gender_cols: gender_preview = clinical_df[candidate_gender_cols].head().to_dict('list') print("Gender columns preview:", gender_preview) # Select UCEC cohort as it's related to endometrial conditions selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" cohort_dir = os.path.join(tcga_root_dir, selected_cohort) # Get file paths for clinical and genetic data clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Get correct file paths using helper function clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) # Read clinical data clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t') # Extract candidate columns age_data = clinical_data[candidate_age_cols] gender_data = clinical_data[candidate_gender_cols] # Preview data print("Age columns preview:") print(preview_df(age_data)) print("\nGender columns preview:") print(preview_df(gender_data)) # Select UCEC cohort as it's related to endometrial conditions selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)" cohort_dir = os.path.join(tcga_root_dir, selected_cohort) # Get file paths for clinical and genetic data clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir) # Load the data files clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t') # Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Identify candidate columns for age and gender candidate_age_cols = ['age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['gender'] # Load the clinical data file directly from tcga_root_dir clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0) # Preview age columns if candidate_age_cols: age_preview = clinical_df[candidate_age_cols].head() print("Age columns preview:") print(preview_df(age_preview)) # Preview gender columns if candidate_gender_cols: gender_preview = clinical_df[candidate_gender_cols].head() print("\nGender columns preview:") print(preview_df(gender_preview)) # Set default values for demographic columns age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" # Print chosen columns print(f"Selected age column: {age_col}") print(f"Selected gender column: {gender_col}") # 1. Extract and standardize clinical features # Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0) clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data on sample IDs linked_data = pd.merge( clinical_features, normalized_gene_df.T, left_index=True, right_index=True, how='inner' ) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)