# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE123993" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE123993" # Output paths out_data_file = "./output/preprocess/3/Epilepsy/GSE123993.csv" out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE123993.csv" out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE123993.csv" json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # The dataset uses Affymetrix HuGene arrays for whole genome expression profiling, # so it contains gene expression data is_gene_available = True # 2.1 Data Availability # Trait (intervention group) is in row 3 trait_row = 3 # Age is not explicitly recorded (all are elderly > 65 but exact age unknown) age_row = None # Gender is in row 1 gender_row = 1 # 2.2 Data Type Conversion Functions def convert_trait(value): # Extract value after colon if ':' in value: value = value.split(':')[1].strip() # Convert to binary: 1 for treatment, 0 for placebo if '25-hydroxycholecalciferol' in value or '25(OH)D3' in value: return 1 elif 'Placebo' in value: return 0 return None def convert_gender(value): if ':' in value: value = value.split(':')[1].strip() # Convert to binary: 0 for female, 1 for male if value.lower() == 'female': return 0 elif value.lower() == 'male': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Extract clinical features since trait_row is not None selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender) # Preview the clinical data preview_dict = preview_df(selected_clinical_df) print("Preview of clinical data:") print(preview_dict) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These IDs appear to be probe IDs from a microarray platform rather than standard gene symbols # They are numeric identifiers starting with '1665' which is consistent with microarray probe formats # We will need to map these probe IDs to their corresponding gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # 1. Looking at gene annotation data, 'ID' column matches identifiers in gene expression data, # and 'gene_assignment' contains gene symbols # 2. Extract mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 3. Apply mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # 4. Normalize gene symbols to handle synonyms gene_data = normalize_gene_symbols_in_index(gene_data) # 5. Save gene expression data gene_data.to_csv(out_gene_data_file) # Preview gene data preview_dict = preview_df(gene_data) print("Preview of gene data:") for i, (col, values) in enumerate(preview_dict.items()): if i >= 5: # limit to first 5 items break print(f"\n{col}:") print(values) # Read the processed clinical and gene data files clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Already normalized in step 6 # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies vitamin D supplementation effects on skeletal muscle transcriptome. " "Data quality is acceptable but the study size is relatively small.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")