# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE199759" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE199759" # Output paths out_data_file = "./output/preprocess/3/Epilepsy/GSE199759.csv" out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE199759.csv" out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE199759.csv" json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability is_gene_available = True # Yes - Series has mRNA data from Agilent LncRNA+mRNA Human Gene Expression Microarray # 2.1 Row identifiers for clinical variables # From sample characteristics dict: # trait - not explicitly given in sample characteristics # gender - key 1 has gender data # age - key 2 has age data trait_row = None # Not in sample characteristics gender_row = 1 age_row = 2 # 2.2 Data type conversion functions def convert_trait(value): # Not used since trait data not in sample characteristics return None def convert_gender(value): # Extract value after colon and convert to binary if not value or ':' not in value: return None gender = value.split(':')[1].strip().lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None def convert_age(value): # Extract number from strings like "age: 39y" if not value or ':' not in value: return None try: age = value.split(':')[1].strip() return float(age.replace('y', '')) except: return None # 3. Save initial metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=False # trait_row is None ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # These identifiers (A_19_P...) are not standard human gene symbols # They appear to be Agilent probe IDs which need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data, focusing on mRNA platform section from io import StringIO import gzip # Read the SOFT file and identify the mRNA platform section mRNA_annotation = [] in_mRNA_platform = False with gzip.open(soft_file, 'rt') as f: for line in f: # Look for the start of mRNA platform section (should contain "LncRNA+mRNA" in the description) if "!Platform_title" in line and "LncRNA+mRNA" in line: in_mRNA_platform = True # Once in mRNA platform section, collect annotation lines if in_mRNA_platform and not line.startswith(("^", "!", "#")): mRNA_annotation.append(line) # Stop when we hit the next platform section if in_mRNA_platform and line.startswith("^Platform"): break # Convert collected annotation lines to DataFrame annotation_text = ''.join(mRNA_annotation) gene_metadata = pd.read_csv(StringIO(annotation_text), sep='\t', low_memory=False) # Preview the annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # Extract gene annotation data using the library function gene_metadata = get_gene_annotation(soft_file) # Print detailed information about first few rows to help identify probe and gene columns print("Column names:") print(gene_metadata.columns) print("\nDetailed view of first row:") print(gene_metadata.iloc[0].to_dict()) print("\nFirst 5 rows of ID and SystematicName columns:") print(gene_metadata[['ID', 'SystematicName']].head()) # Get mapping between probe IDs and gene symbols # The ID column matches probe IDs in expression data # SystematicName column appears to contain gene information mapping_df = get_gene_mapping(gene_metadata, 'ID', 'SystematicName') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Preview the gene data print("\nGene expression data shape:", gene_data.shape) print("\nFirst few genes and samples:") print(gene_data.head().iloc[:, :5]) # Extract gene annotation data, focusing on mRNA platform section from io import StringIO import gzip # Read the SOFT file and identify the mRNA platform section platform_data = [] in_platform = False columns_found = False with gzip.open(soft_file, 'rt') as f: for line in f: # Look for the start and end of platform sections if line.startswith('^PLATFORM'): # If we find a new platform section, check if previous was mRNA if in_platform and 'LncRNA+mRNA' in ''.join(platform_data): break platform_data = [] in_platform = True continue if in_platform: # Look for lines containing column names with gene information if "Reporter Name" in line or "Gene Symbol" in line or "Gene Name" in line: columns_found = True platform_data.append(line) # If we didn't find useful columns, try the whole file if not columns_found: with gzip.open(soft_file, 'rt') as f: platform_data = f.readlines() # Convert platform data to string filtering out prefixes and extracting table data filtered_lines = [] table_started = False for line in platform_data: if table_started: if not line.startswith(('^', '!', '#')): filtered_lines.append(line) elif "Reporter Name\tGene Symbol" in line or "ID\tGene Name" in line: table_started = True filtered_lines.append(line) # Convert filtered lines to DataFrame gene_metadata = pd.read_csv(StringIO(''.join(filtered_lines)), sep='\t', low_memory=False) # Preview the annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of first 5 rows:") print(gene_metadata.head().to_dict()) # Save the initial filtering info indicating the dataset cannot be used validate_and_save_cohort_info( is_final=False, # Changed to False since this is initial filtering cohort=cohort, info_path=json_path, is_gene_available=False, # Although there is gene data, we can't properly map the identifiers is_trait_available=False # No trait information available in clinical data )