# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE273630" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE273630" # Output paths out_data_file = "./output/preprocess/3/Epilepsy/GSE273630.csv" out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE273630.csv" out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE273630.csv" json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # Review gene expression data availability is_gene_available = True # Dataset contains dopamine-regulated gene expression data from a Nanostring panel # Clinical data variables trait_row = None # No epilepsy trait data, all subjects are explicitly excluded for epilepsy age_row = None # Age is constant (35-44 years) by design gender_row = None # Gender is constant (all males) by design def convert_trait(x): # Not used since trait data is not available return None def convert_age(x): # Not used since age data is not available return None def convert_gender(x): # Not used since gender data is not available return None # Save metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # The identifiers are already human gene symbols (ABAT, ABL1, ACAA1, etc.) # These are well-recognized standard HUGO gene symbols, no mapping needed requires_gene_mapping = False # 1. Normalize gene symbols and save genetic_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) genetic_df.to_csv(out_gene_data_file) # This dataset explicitly excludes epilepsy as shown in background info: # "Exclusion criteria were ... epilepsy" note = "Dataset not usable for epilepsy studies as it explicitly excludes epilepsy patients in exclusion criteria" is_usable = validate_and_save_cohort_info( is_final=False, # Filtering out at initial stage cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, note=note )