# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE42986" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE42986" # Output paths out_data_file = "./output/preprocess/3/Epilepsy/GSE42986.csv" out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE42986.csv" out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE42986.csv" json_path = "./output/preprocess/3/Epilepsy/cohort_info.json" # Get paths to the SOFT and matrix files soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data from matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values for each feature (row) in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("=== Dataset Background Information ===") print(background_info) print("\n=== Sample Characteristics ===") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The dataset uses Affymetrix Human Exon microarray which measures gene expression is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # The trait (respiratory chain deficiency) is recorded in row 1 trait_row = 1 # Gender is available in row 2 gender_row = 2 # Age is available in row 3 age_row = 3 # 2.2 Data Type Conversion Functions def convert_trait(x): # Extract value after colon value = x.split(': ')[1].lower() # Convert to binary: 0 for no deficiency, 1 for any deficiency if 'no respiratory chain complex deficiency' in value: return 0 elif 'not determined' in value: return None else: return 1 def convert_gender(x): # Extract value after colon value = x.split(': ')[1].upper() # Convert F to 0, M to 1 if value == 'F': return 0 elif value == 'M': return 1 return None def convert_age(x): # Extract value after colon value = x.split(': ')[1].lower() # Convert to float, handle non-numeric values if value == 'not obtained': return None try: return float(value) except: return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction clinical_df = geo_select_clinical_features(clinical_data, trait='Disease', trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the results preview_dict = preview_df(clinical_df) print("Preview of clinical features:") print(preview_dict) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file genetic_df = get_genetic_data(matrix_file) # Print DataFrame shape and first 20 row IDs print("DataFrame shape:", genetic_df.shape) print("\nFirst 20 row IDs:") print(genetic_df.index[:20]) print("\nPreview of first few rows and columns:") print(genetic_df.head().iloc[:, :5]) # Looking at the identifier format (e.g. '100009676_at', '10000_at'), these appear to be mouse # probe identifiers from an Affymetrix array platform, not human gene symbols. # We will need to map these to proper gene symbols. requires_gene_mapping = True # Extract gene annotation data, excluding control probe lines gene_metadata = get_gene_annotation(soft_file) # Preview filtered annotation data print("Column names:") print(gene_metadata.columns) print("\nPreview of gene annotation data:") print(preview_df(gene_metadata)) # 1. The column 'ID' in gene_metadata matches the probe identifiers in genetic_df # The 'Symbol' column contains the gene symbols we want to map to # 2. Extract gene mapping information mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_df, mapping_df) # Print shape before and after mapping to verify print("Shape before mapping (probes x samples):", genetic_df.shape) print("Shape after mapping (genes x samples):", gene_data.shape) # Preview the mapped data print("\nPreview of gene expression data:") print(gene_data.head().iloc[:, :5]) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, 'Disease') # 4. Check for biased features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Disease') # 5. Final validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Dataset contains gene expression data from skeletal muscle and fibroblast samples of mitochondrial disease patients and controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)