# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE174060" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE174060" # Output paths out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE174060.csv" out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE174060.csv" out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE174060.csv" json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # Gene Expression Data Availability # Yes, this dataset contains gene expression data from CD34+ cells according to background information is_gene_available = True # Data Availability and Type Conversion trait_row = 4 # Diagnosis is recorded in row 4 age_row = 2 # Age is recorded in row 2 gender_row = 3 # Sex is recorded in row 3 def convert_trait(x): """Convert trait data to binary (0=control, 1=case)""" if not isinstance(x, str): return None value = x.split(": ")[-1].strip().lower() if value == "healthy control": return 0 elif value == "et": return 1 return None def convert_age(x): """Convert age data to continuous values""" if not isinstance(x, str): return None try: age = int(x.split(": ")[-1]) return age except: return None def convert_gender(x): """Convert gender data to binary (0=female, 1=male)""" if not isinstance(x, str): return None value = x.split(": ")[-1].strip().upper() if value == "F": return 0 elif value == "M": return 1 return None # Initial validation validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # Extract clinical features selected_clinical = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the data preview = preview_df(selected_clinical) print("Preview of selected clinical features:") print(preview) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These are probe IDs from Affymetrix transcriptome arrays (TC prefix) that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Extract gene mapping from annotation data # 'ID' column matches probe IDs in expression data # 'gene_assignment' contains gene symbols in the format "RefSeq_ID // Gene_Symbol // Description" mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize gene symbols using NCBI standard symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save the processed gene data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical data file clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data using the normalized gene data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")