# Path Configuration from tools.preprocess import * # Processing context trait = "Essential_Thrombocythemia" cohort = "GSE61629" # Input paths in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia" in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE61629" # Output paths out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE61629.csv" out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE61629.csv" out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE61629.csv" json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # Yes, this appears to be microarray gene expression data based on background info is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 0 # Disease state is recorded in row 0 age_row = None # Age is not available gender_row = None # Gender is not available # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert disease state to binary (0=control, 1=ET)""" if pd.isna(value): return None # Extract value after colon and strip whitespace value = value.split(':')[1].strip().upper() if value == 'ET': return 1 elif value == 'CONTROL': return 0 return None def convert_age(value: str) -> float: """Convert age to float - not used since age not available""" return None def convert_gender(value: str) -> int: """Convert gender to binary - not used since gender not available""" return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction (since trait_row is not None) clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait) # Preview the extracted features print("Preview of clinical features:") print(preview_df(clinical_features)) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Get gene mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result to verify the conversion print("\nFirst few genes and their expression values:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in Essential Thrombocythemia patients and controls. " "The data contains expression measurements from whole blood samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.") # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # From series title and summary, this is a microarray gene expression dataset is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (ET vs control) is in row 0 under "disease state" trait_row = 0 # Age and gender are not provided in sample characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait value to binary: ET=1, control=0""" if pd.isna(value): return None value = value.split(": ")[1].strip().upper() if value == 'ET': return 1 elif value == 'CONTROL': return 0 return None def convert_age(value: str) -> float: """Convert age to float""" if pd.isna(value): return None try: age = float(value.split(": ")[1].strip()) return age except: return None def convert_gender(value: str) -> int: """Convert gender to binary: female=0, male=1""" if pd.isna(value): return None value = value.split(": ")[1].strip().lower() if value == 'female': return 0 elif value == 'male': return 1 return None # 3. Save Metadata # The trait_row is not None, so trait data is available validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True) # 4. Clinical Feature Extraction # Since trait data is available, extract clinical features selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # Based on the probe IDs shown (e.g. '1007_s_at', '1053_at'), these appear to be Affymetrix probe IDs # rather than human gene symbols. They need to be mapped to standard gene symbols. requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Get gene mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result to verify the conversion print("\nFirst few genes and their expression values:") preview_dict = preview_df(gene_data) for col, values in preview_dict.items(): print(f"{col}: {values}") # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data) # 3-4. Handle missing values and check for bias linked_data = handle_missing_values(linked_data, trait) is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info note = ("This dataset studies gene expression profiles in Essential Thrombocythemia patients and controls. " "The data contains expression measurements from whole blood samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.") # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability # Based on background info mentioning "Microarrays were used to assess gene expression" # and "gene expression index calculation", this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row Identification # Trait (ET vs control) can be found in row 0 under "disease state" trait_row = 0 # Age and gender are not available in the sample characteristics age_row = None gender_row = None # 2.2 Conversion Functions def convert_trait(value): """Convert disease state to binary (0=control, 1=ET)""" if pd.isna(value): return None # Extract value after colon and strip whitespace value = value.split(':')[1].strip().lower() if value == 'et': return 1 elif value == 'control': return 0 # PMF and PV are other diseases, not relevant for ET study return None def convert_age(value): """Placeholder function since age is not available""" return None def convert_gender(value): """Placeholder function since gender is not available""" return None # 3. Save Metadata # Initial filtering - only checking data availability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical data print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file) # Read the gene data that was saved in previous step gene_data = pd.read_csv(out_gene_data_file, index_col=0) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical and gene data files clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, " "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")