# Path Configuration from tools.preprocess import * # Processing context trait = "Gaucher_Disease" cohort = "GSE124283" # Input paths in_trait_dir = "../DATA/GEO/Gaucher_Disease" in_cohort_dir = "../DATA/GEO/Gaucher_Disease/GSE124283" # Output paths out_data_file = "./output/preprocess/3/Gaucher_Disease/GSE124283.csv" out_gene_data_file = "./output/preprocess/3/Gaucher_Disease/gene_data/GSE124283.csv" out_clinical_data_file = "./output/preprocess/3/Gaucher_Disease/clinical_data/GSE124283.csv" json_path = "./output/preprocess/3/Gaucher_Disease/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data # Since this is a microarray study of gene expression changes in skin fibroblasts, # gene expression data should be available is_gene_available = True # 2. Variable Availability and Conversion Functions # 2.1 Data rows trait_row = 2 # 'condition' field contains disease status gender_row = 3 # 'gender' field is available age_row = None # Age information not available # 2.2 Conversion Functions def convert_trait(value: str) -> int: """Convert trait values to binary (0: control, 1: Gaucher)""" if not value or "N/A" in value: return None value = value.split(": ")[1] if ": " in value else value if "Control" in value: return 0 elif "Gaucher" in value: return 1 return None # Other conditions like NPC are not relevant def convert_gender(value: str) -> int: """Convert gender values to binary (0: female, 1: male)""" if not value or "N/A" in value: return None value = value.split(": ")[1] if ": " in value else value if value == "K": # K likely means "kobieta" (female in Polish) return 0 elif value == "M": # M likely means male return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we proceed with feature extraction selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected features print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These gene IDs look like human gene symbols (e.g., A1BG, A2M, AAAS, AACS etc.) # Therefore no mapping is required requires_gene_mapping = False # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical data file clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data using the normalized gene data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = "Gene expression data from fibroblasts of Gaucher disease patients and healthy controls. Also contains samples from NPC disease patients which were excluded from analysis." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")