# Path Configuration from tools.preprocess import * # Processing context trait = "Glioblastoma" cohort = "GSE129978" # Input paths in_trait_dir = "../DATA/GEO/Glioblastoma" in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE129978" # Output paths out_data_file = "./output/preprocess/3/Glioblastoma/GSE129978.csv" out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE129978.csv" out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE129978.csv" json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # This is a gene expression analysis study based on series title # 2. Variable Availability and Data Type Conversion trait_row = None # Cell line information doesn't provide suitable trait variation age_row = None # No age information available gender_row = None # No gender information available def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the numeric identifiers and the appearance of 'ID_REF' in raw file, # these appear to be probe IDs from a microarray platform rather than gene symbols requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # 1. From previous output, gene expression data uses columns 'ID' as identifiers # Since this is mouse data and we need human data, we should stop here gene_data = pd.DataFrame() # Empty dataframe to indicate invalid data # Print warning message print("WARNING: This dataset contains mouse gene expression data but human data is required.") print("The preprocessing will stop here and return an empty dataframe.") # Preview results print("\nShape of gene expression data:", gene_data.shape) print("\nFirst few rows:") print(gene_data.head())