# Path Configuration from tools.preprocess import * # Processing context trait = "Glioblastoma" cohort = "GSE178236" # Input paths in_trait_dir = "../DATA/GEO/Glioblastoma" in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE178236" # Output paths out_data_file = "./output/preprocess/3/Glioblastoma/GSE178236.csv" out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE178236.csv" out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE178236.csv" json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on background info mentioning "gene expression analysis" and "gene expression profile" is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 5 # IDH status can indicate glioblastoma subtype age_row = 2 # Age information available gender_row = 1 # Gender information available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].lower() # Convert IDH status to binary: 1 for wild-type (wt), 0 for mutant (mut) if 'wt' in value: return 1 elif 'mut' in value: return 0 return None def convert_age(x): if not isinstance(x, str): return None try: # Extract numeric age value after colon age = int(x.split(': ')[-1]) return age except: return None def convert_gender(x): if not isinstance(x, str): return None value = x.split(': ')[-1].lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("\nPreview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical data clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Observe the identifiers start with "ILMN_" - these are Illumina probe IDs, not gene symbols requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation columns and example values:") print(preview_df(gene_annotation)) # Get mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # Preview results print("\nShape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene expression data:") print(gene_data.head()) # 1. Normalize gene symbols and save normalized gene data gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)