# Path Configuration from tools.preprocess import * # Processing context trait = "Glioblastoma" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/3/Glioblastoma/TCGA.csv" out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/TCGA.csv" json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json" # 1. Select the relevant subdirectory for glioblastoma subdirectory = 'TCGA_Glioblastoma_(GBM)' cohort_dir = os.path.join(tcga_root_dir, subdirectory) # 2. Get the file paths clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load the data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print clinical data columns print("Clinical data columns:") print(clinical_df.columns.tolist()) # Define candidate columns for age and gender candidate_age_cols = ['CDE_DxAge', 'age_at_initial_pathologic_diagnosis', 'days_to_birth'] candidate_gender_cols = ['gender'] # Preview age and gender columns from clinical data age_cols_dict = clinical_df[candidate_age_cols].head(5).to_dict('list') print(f"Age columns preview: {age_cols_dict}") gender_cols_dict = clinical_df[candidate_gender_cols].head(5).to_dict('list') print(f"Gender columns preview: {gender_cols_dict}") # Analyze age columns age_col = 'age_at_initial_pathologic_diagnosis' # Choose this as it provides direct age values in years # Analyze gender columns gender_col = 'gender' # Only one gender column available # Print chosen columns print(f"Chosen age column: {age_col}") print(f"Chosen gender column: {gender_col}") # 1. Extract and standardize clinical features # Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0) clinical_features = tcga_select_clinical_features( clinical_df, trait=trait, age_col='age_at_initial_pathologic_diagnosis', gender_col='gender' ) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # 2. Normalize gene symbols and save normalized_gene_df = normalize_gene_symbols_in_index(genetic_df) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_df.to_csv(out_gene_data_file) # 3. Link clinical and genetic data on sample IDs linked_data = pd.merge( clinical_features, normalized_gene_df.T, left_index=True, right_index=True, how='inner' ) # 4. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 5. Check for bias in trait and demographic features trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Validate data quality and save cohort info note = "Contains molecular data from tumor and normal samples with patient demographics." is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=note ) # 7. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)