# Path Configuration from tools.preprocess import * # Processing context trait = "HIV_Resistance" cohort = "GSE46599" # Input paths in_trait_dir = "../DATA/GEO/HIV_Resistance" in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE46599" # Output paths out_data_file = "./output/preprocess/3/HIV_Resistance/GSE46599.csv" out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE46599.csv" out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE46599.csv" json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json" # Get relevant file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data from the matrix file background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get dictionary of unique values per row in clinical data unique_values_dict = get_unique_values_by_row(clinical_data) # Print background info print("Background Information:") print("-" * 50) print(background_info) print("\n") # Print clinical data unique values print("Sample Characteristics:") print("-" * 50) for row, values in unique_values_dict.items(): print(f"{row}:") print(f" {values}") print() # 1. Gene Expression Data Availability is_gene_available = True # Yes, this is gene expression data studying ISGs, not miRNA/methylation # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 4 # HIV resistance status in row 4 age_row = None # Age not available gender_row = None # Gender not available # 2.2 Data Type Conversion Functions def convert_trait(x): if not isinstance(x, str): return None val = x.split(': ')[-1].lower() if 'resistant' == val: return 1 elif 'partially resistant' == val: return 0.5 elif 'permissive' == val: return 0 elif 'untreated' == val: return None return None def convert_age(x): return None # Not used def convert_gender(x): return None # Not used # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data genetic_data = get_genetic_data(matrix_file_path) # Print first 20 probe IDs print("First 20 probe IDs:") print(genetic_data.index[:20]) # These are Illumina BeadArray probe IDs (starting with ILMN_), not gene symbols requires_gene_mapping = True # Extract gene annotation from SOFT file gene_annotation = get_gene_annotation(soft_file_path) # Preview column names and first few values preview_dict = preview_df(gene_annotation) print("Column names and preview values:") for col, values in preview_dict.items(): print(f"\n{col}:") print(values) # Get gene mapping from annotation data # 'ID' column contains probe IDs (ILMN_*) matching gene expression data # 'Symbol' column contains gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview first few genes print("\nFirst few genes after mapping:") print(gene_data.head().index) # 1. Normalize gene symbols and save normalized gene data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) normalized_gene_data.to_csv(out_gene_data_file) # Read the processed clinical data file clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data using the normalized gene data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # Detect bias in trait and demographic features, remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate data quality and save cohort info note = "Gene expression data from glucocorticoid sensitivity study." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) else: print(f"Dataset {cohort} did not pass quality validation and will not be saved.")