# Path Configuration from tools.preprocess import * # Processing context trait = "Heart_rate" cohort = "GSE117070" # Input paths in_trait_dir = "../DATA/GEO/Heart_rate" in_cohort_dir = "../DATA/GEO/Heart_rate/GSE117070" # Output paths out_data_file = "./output/preprocess/3/Heart_rate/GSE117070.csv" out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE117070.csv" out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE117070.csv" json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # Get gene expression data from matrix file gene_data = get_genetic_data(matrix_file_path) is_gene_available = len(gene_data.columns) > 1 is_trait_available = False # Since we found no heart rate measurements in step 1 # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data together # Since trait data is not available, we have no clinical data to link with clinical_data = pd.DataFrame() if not clinical_data.empty: linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) else: linked_data = pd.DataFrame() # 3. Handle missing values if we have linked data if not linked_data.empty and trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased = True # No trait data means it's biased by default if not linked_data.empty and trait in linked_data.columns: is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "This dataset lacks heart rate measurements. The study focused on gene expression changes in PBMCs before and after physical activity, but did not include heart rate as a measured variable." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print information about the data structure print("First few rows of the genetic data:") print(genetic_data.head()) print("\nShape of genetic data:", genetic_data.shape) print("\nColumn names:", genetic_data.columns.tolist()) # Review the gene identifiers in the genetic data # The IDs shown (e.g. 1007_s_at, 1053_at) appear to be probe IDs from an Affymetrix microarray platform # These are not human gene symbols and will need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Get gene mapping from annotation data # 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') # Apply gene mapping to convert probe expression to gene expression gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print information about the mapping results print("Shape of probe-level data:", genetic_data.shape) print("Shape of gene-level data:", gene_data.shape) print("\nPreview of mapped gene expression data:") print(gene_data.head()) # Get probe-level data from previous step genetic_data = get_genetic_data(matrix_file_path) # Get mapping data from previous step mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') # First apply gene mapping to convert probe data to gene data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Then normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Check data availability is_gene_available = len(gene_data.columns) > 1 is_trait_available = False # Since we found no heart rate measurements in step 1 # Link clinical and genetic data together # Since trait data is not available, we have no clinical data to link with clinical_data = pd.DataFrame() if not clinical_data.empty: linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) else: linked_data = pd.DataFrame() # Handle missing values if we have linked data if not linked_data.empty and trait in linked_data.columns: linked_data = handle_missing_values(linked_data, trait) # Judge whether features are biased and remove biased demographic features is_biased = True # No trait data means it's biased by default if not linked_data.empty and trait in linked_data.columns: is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Final validation and save metadata note = "This dataset lacks heart rate measurements. The study focused on gene expression changes before and after physical activity, but did not include heart rate as a measured variable." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=linked_data, note=note ) # Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)