# Path Configuration from tools.preprocess import * # Processing context trait = "Heart_rate" cohort = "GSE18583" # Input paths in_trait_dir = "../DATA/GEO/Heart_rate" in_cohort_dir = "../DATA/GEO/Heart_rate/GSE18583" # Output paths out_data_file = "./output/preprocess/3/Heart_rate/GSE18583.csv" out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE18583.csv" out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE18583.csv" json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Yes, based on background info this is gene expression data # 2.1 Data Availability trait_row = 2 # "heart rate (bpm)" data is in row 2 age_row = None # Age is not available gender_row = 0 # Gender info is in row 0 (all male) # 2.2 Data Type Conversion Functions def convert_trait(value): if pd.isna(value): return None try: # Extract numeric value after "heart rate (bpm):" return float(value.split(": ")[1]) except: return None def convert_age(value): # Not used since age data is not available return None def convert_gender(value): if pd.isna(value): return None # All samples are male based on background info return 1 # 3. Save Metadata initial_validation = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print the first 20 row IDs print("First 20 row IDs (gene/probe identifiers):") print(genetic_data.index[:20].tolist()) # The identifiers start with 'ENST' which indicates Ensembl transcript IDs # They need to be mapped to human gene symbols for downstream analysis requires_gene_mapping = True # Examine full content of SOFT file first to understand the annotation structure with gzip.open(soft_file_path, 'rt') as f: for i, line in enumerate(f): if i < 100: # Look at first 100 lines print(line.strip()) else: break # After examining file content, extract gene annotation with appropriate prefixes gene_metadata = get_gene_annotation(soft_file_path, prefixes=['#', '!', '^', '@']) # Print all column names print("\nAll annotation columns:") print(list(gene_metadata.columns)) # Preview contents with larger max_items preview = preview_df(gene_metadata, max_items=1000) print("\nGene annotation preview:") print(preview) # 1. Re-examine more contents of SOFT file with gzip.open(soft_file_path, 'rt') as f: chip_annotation = '' reading = False for line in f: if '!platform_table_begin' in line: reading = True continue if reading: if '!platform_table_end' in line: break chip_annotation += line # Read platform annotation into dataframe annotation_df = pd.read_csv(io.StringIO(chip_annotation), sep='\t') print("\nAvailable annotation columns:") print(list(annotation_df.columns)) # Let's look at more rows to understand the annotation structure print("\nFirst 10 rows of annotation:") print(annotation_df.head(10)) # For this dataset, all we have are Ensembl transcript IDs # As a workaround, we'll extract gene symbols from the transcript IDs themselves def extract_gene_symbol(transcript_id): # Ensembl transcript IDs often start with gene symbol, e.g. ENST00000230882_CDC42_at parts = transcript_id.split('_') if len(parts) > 2: # If format is ENST_GENE_at return parts[1] return transcript_id # Return original if no embedded gene symbol # Create mapping dataframe mapping_data = pd.DataFrame({ 'ID': genetic_data.index, 'Gene': [extract_gene_symbol(id) for id in genetic_data.index] }) # Convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview mapped gene data print("\nFirst few genes and their expression values:") print(preview_df(gene_data)) # Save gene expression data os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 1. Skip gene symbol normalization as we'll work with transcript IDs gene_data.index = gene_data.index.str.replace('_at', '') # Clean up transcript IDs gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # Debug sample ID alignment print("Clinical data samples:", clinical_data.columns.tolist()[:5]) print("Genetic data samples:", gene_data.columns.tolist()[:5]) # Ensure sample IDs match by removing 'GSM' prefix if present clinical_data.columns = clinical_data.columns.str.replace('GSM', '') gene_data.columns = gene_data.columns.str.replace('GSM', '') # Link the data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # Restore trait name which might have been lost during linking linked_data = linked_data.rename(index={'Heart_rate': trait}) # 3. Handle missing values systematically linked_data = handle_missing_values(linked_data, trait) # 4. Check bias in trait and demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and saving metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None), is_biased=is_biased, df=linked_data, note="This dataset contains gene expression from skeletal muscle tissue measured with Ensembl transcript IDs. Gene symbol mapping was not possible. Gender is constant (all male). Heart rate measurement is available for most but not all samples." ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)