# Path Configuration from tools.preprocess import * # Processing context trait = "Heart_rate" cohort = "GSE236927" # Input paths in_trait_dir = "../DATA/GEO/Heart_rate" in_cohort_dir = "../DATA/GEO/Heart_rate/GSE236927" # Output paths out_data_file = "./output/preprocess/3/Heart_rate/GSE236927.csv" out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE236927.csv" out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE236927.csv" json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" # Previous code clinical_data = pd.DataFrame({0: ["Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development", "Title: Transcriptome profiling of human fetal hearts identifies distinct co-expression response networks to tetralogy of Fallot revealing novel pathways of pathogenesis and implications for cardiac development"], 1: ["Organism: Homo sapiens", "Organism: Homo sapiens", "Organism: Homo sapiens", "Organism: Homo sapiens", "Organism: Homo sapiens"], 2: ["characteristic: tissue: Right ventricle", "characteristic: tissue: Right ventricle", "characteristic: tissue: Right ventricle", "characteristic: tissue: Right ventricle", "characteristic: tissue: Right ventricle"], 3: ["characteristic: disease state: tetralogy of fallot", "characteristic: disease state: normal", "characteristic: disease state: tetralogy of fallot", "characteristic: disease state: normal", "characteristic: disease state: tetralogy of fallot"], 4: ["characteristic: gestational age: 13-17 weeks", "characteristic: gestational age: 13-17 weeks", "characteristic: gestational age: 13-17 weeks", "characteristic: gestational age: 13-17 weeks", "characteristic: gestational age: 13-17 weeks"], 5: ["characteristic: heart rate: 155", "characteristic: heart rate: 123", "characteristic: heart rate: 135", "characteristic: heart rate: 145", "characteristic: heart rate: 157"]}) # Transpose clinical data for proper processing clinical_data = clinical_data.T # 1. Gene Expression Data Availability is_gene_available = True # RNA transcriptome data # 2.1 Data Availability trait_row = 5 # heart rate data in row 5 age_row = 4 # gestational age in row 4 gender_row = None # gender not available # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None try: # Extract numeric value after colon val = float(x.split(': ')[-1]) return val except: return None def convert_age(x): if pd.isna(x): return None try: # Extract weeks range and take average weeks = x.split(': ')[-1].replace('weeks','').strip() if '-' in weeks: low, high = map(float, weeks.split('-')) return (low + high)/2 return float(weeks) except: return None def convert_gender(x): # Not used since gender data unavailable return None # 3. Save Initial Filtering Results is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features if trait_row is not None: clinical_df = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) print("Preview of processed clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data gene_data = get_genetic_data(matrix_path) # Print first 20 probe/gene IDs print("First 20 probe/gene IDs:") print(gene_data.index[:20].tolist()) # Review the gene IDs - these are Illumina probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_path) # Preview column names and first few values column_preview = preview_df(gene_annotation) print("\nGene annotation columns and sample values:") print(column_preview) # Extract mapping data between probe IDs and gene symbols # The ID column contains probe IDs matching those in gene expression data # The Symbol column contains gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # Apply gene mapping to convert probe-level data to gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Print preview of mapped gene expression data print("\nPreview of gene expression data after mapping to gene symbols:") print(preview_df(gene_data)) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Load saved clinical data clinical_features = pd.read_csv(out_clinical_data_file, index_col=0) # Ensure clinical features are in correct format (features × samples) if len(clinical_features.columns) > len(clinical_features.index): clinical_features = clinical_features.T # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biases and remove biased demographic features print("\nChecking feature distributions:") trait_type = 'continuous' # Heart rate is a continuous variable is_biased = judge_continuous_variable_biased(linked_data, trait) # Remove biased demographic features if "Age" in linked_data.columns: if judge_continuous_variable_biased(linked_data, "Age"): linked_data = linked_data.drop(columns="Age") if "Gender" in linked_data.columns: if judge_binary_variable_biased(linked_data, "Gender"): linked_data = linked_data.drop(columns="Gender") # 5. Validate and save cohort info note = "Heart rate values measured in normal fetal heart tissue and tissue from tetralogy of fallot cases." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)