# Path Configuration from tools.preprocess import * # Processing context trait = "Heart_rate" cohort = "GSE34788" # Input paths in_trait_dir = "../DATA/GEO/Heart_rate" in_cohort_dir = "../DATA/GEO/Heart_rate/GSE34788" # Output paths out_data_file = "./output/preprocess/3/Heart_rate/GSE34788.csv" out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE34788.csv" out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE34788.csv" json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" # Get file paths soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values by row in clinical data and limit the number shown sample_chars = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in sample_chars.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Based on the summary mentioning "microarray analyses on mRNA", this dataset contains gene expression data is_gene_available = True # 2.1 Data Availability trait_row = 6 # Heart rate data available in row 6 gender_row = 1 # Gender data available in row 1 age_row = None # Age data not available in sample characteristics # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert heart rate response to binary: 0 for low responders, 1 for high responders""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'low' in value: return 0 elif 'high' in value: return 1 return None def convert_gender(value: str) -> int: """Convert gender to binary: 0 for female, 1 for male""" if not value or ':' not in value: return None value = value.split(':')[1].strip().lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None convert_age = None # Not needed since age data is not available # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_features) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data gene_data = get_genetic_data(matrix_path) # Print first 20 probe/gene IDs print("First 20 probe/gene IDs:") print(gene_data.index[:20].tolist()) # These identifiers appear to be numerical probe IDs, not human gene symbols # They look like Illumina BeadArray probe IDs which will need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_path) # Preview column names and first few values column_preview = preview_df(gene_annotation) print("\nGene annotation columns and sample values:") print(column_preview) # Get gene mapping between gene names and probes # 'ID' in gene annotation matches probe IDs in gene expression data # 'gene_assignment' contains information about gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # Apply gene mapping to convert probe level data to gene level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Normalize gene symbols to standard format and aggregate duplicate genes gene_data = normalize_gene_symbols_in_index(gene_data) # Preview updated gene data print("\nFirst 20 gene symbols after mapping:") print(gene_data.index[:20].tolist()) # 1. Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biases and remove biased demographic features trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous' if trait_type == "binary": is_biased = judge_binary_variable_biased(linked_data, trait) else: is_biased = judge_continuous_variable_biased(linked_data, trait) # Remove biased demographic features if "Age" in linked_data.columns: if judge_continuous_variable_biased(linked_data, "Age"): linked_data = linked_data.drop(columns="Age") if "Gender" in linked_data.columns: if judge_binary_variable_biased(linked_data, "Gender"): linked_data = linked_data.drop(columns="Gender") # 5. Validate and save cohort info note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=linked_data, note=note ) # 6. Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)