# Path Configuration from tools.preprocess import * # Processing context trait = "Heart_rate" cohort = "GSE35661" # Input paths in_trait_dir = "../DATA/GEO/Heart_rate" in_cohort_dir = "../DATA/GEO/Heart_rate/GSE35661" # Output paths out_data_file = "./output/preprocess/3/Heart_rate/GSE35661.csv" out_gene_data_file = "./output/preprocess/3/Heart_rate/gene_data/GSE35661.csv" out_clinical_data_file = "./output/preprocess/3/Heart_rate/clinical_data/GSE35661.csv" json_path = "./output/preprocess/3/Heart_rate/cohort_info.json" # Get file paths soft_path, matrix_path = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_path) # Get unique values by row in clinical data and limit the number shown sample_chars = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(background_info) print("\nSample Characteristics:") for feature, values in sample_chars.items(): print(f"\n{feature}:") print(values) # 1. Gene Expression Data Availability # Series title suggests transcriptional data and U133+2 arrays, so it's likely gene expression data is_gene_available = True # 2. Variable Availability and Type Conversion # Heart rate data is available in row 2 trait_row = 2 # Age data not available age_row = None # Gender data available in row 0 gender_row = 0 def convert_trait(val): if pd.isna(val): return None try: # Extract numeric value after "heart rate (bpm):" val = val.split(":")[-1].strip() return float(val) except: return None def convert_age(val): # Age not available return None def convert_gender(val): if pd.isna(val): return None try: # Extract value after colon val = val.split(":")[-1].strip().lower() if val == "male": return 1 elif val == "female": return 0 return None except: return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) # Save clinical features os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data gene_data = get_genetic_data(matrix_path) # Print first 20 probe/gene IDs print("First 20 probe/gene IDs:") print(gene_data.index[:20].tolist()) requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_annotation = get_gene_annotation(soft_path) # Preview column names and first few values column_preview = preview_df(gene_annotation) print("\nGene annotation columns and sample values:") print(column_preview) # Since we have Ensembl transcript IDs (ENST), we should use direct gene symbol # normalization rather than probe-to-gene mapping # First normalize the transcript IDs by removing '_at' suffix gene_data.index = gene_data.index.str.replace('_at$', '', regex=True) # Normalize gene symbols using NCBI gene synonym dictionary gene_data = normalize_gene_symbols_in_index(gene_data) # Preview result print("\nFirst 20 normalized gene symbols:") print(gene_data.index[:20].tolist()) # Get mapping from annotation data mapping_df = gene_annotation[['ID', 'Gene Symbol']].copy() mapping_df = mapping_df.rename(columns={'Gene Symbol': 'Gene'}) # Remove trailing '_at' from IDs to match gene_data mapping_df['ID'] = mapping_df['ID'].str.replace('_at$', '', regex=True) # Convert probe measurements to gene expression values gene_data = apply_gene_mapping(gene_data, mapping_df) # Normalize gene symbols and save gene data gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for biases and remove biased demographic features trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous' if trait_type == "binary": is_biased = judge_binary_variable_biased(linked_data, trait) else: is_biased = judge_continuous_variable_biased(linked_data, trait) # Remove biased demographic features if "Age" in linked_data.columns: if judge_continuous_variable_biased(linked_data, "Age"): linked_data = linked_data.drop(columns="Age") if "Gender" in linked_data.columns: if judge_binary_variable_biased(linked_data, "Gender"): linked_data = linked_data.drop(columns="Gender") # Validate and save cohort info note = "The dataset contains before/after exercise measurements for each subject. We merged them to increase statistical power." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available, is_biased=is_biased, df=linked_data, note=note ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)