# Path Configuration from tools.preprocess import * # Processing context trait = "Height" cohort = "GSE101709" # Input paths in_trait_dir = "../DATA/GEO/Height" in_cohort_dir = "../DATA/GEO/Height/GSE101709" # Output paths out_data_file = "./output/preprocess/3/Height/GSE101709.csv" out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE101709.csv" out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE101709.csv" json_path = "./output/preprocess/3/Height/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info mentioning "gene expression" and Illumina HT12 BeadChip, this is gene expression data is_gene_available = True # 2.1 Data Availability # Height (trait) and clinical data are mentioned in screening questionnaire from background info trait_row = None # Height not available in sample characteristics age_row = 1 # Age can be inferred from "age group" field gender_row = None # Gender not found in sample characteristics # 2.2 Data Type Conversion Functions def convert_age(x): if not isinstance(x, str): return None value = x.split(": ")[-1].strip() if value == "Young": return 25.5 # Mid-point of 21-30 range mentioned in background elif value in ["Older", "Frail"]: return 70 # Approximation for >65 age group return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip as trait_row is None # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These are Illumina probe IDs (ILMN_) which need to be mapped to human gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # 1. ID and Symbol columns contain the mapping information prob_col = 'ID' # ILMN_* identifiers match those in gene expression data gene_col = 'Symbol' # Contains gene symbols # 2. Get gene mapping dataframe mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col) # 3. Apply gene mapping to convert probe-level data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the converted gene data print("Preview of mapped gene expression data:") print(f"Number of genes: {len(gene_data)}") print("First few gene symbols:") print(gene_data.index[:10].tolist()) # 1. Normalize gene symbols and save gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Create empty clinical features dataframe since trait_row is None clinical_features = pd.DataFrame() # 2. Link clinical and genetic data (will contain only gene data since clinical_features is empty) linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values (will maintain only gene data since we have no trait) linked_data = handle_missing_values(linked_data, trait) # 4. Judge biased features (set is_biased=True since we have no trait data) is_biased = True # 5. Final validation and save metadata note = "Dataset lacks height measurements, though gene expression data is available" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable (which it won't be due to lack of trait data) if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)