# Path Configuration from tools.preprocess import * # Processing context trait = "Height" cohort = "GSE106800" # Input paths in_trait_dir = "../DATA/GEO/Height" in_cohort_dir = "../DATA/GEO/Height/GSE106800" # Output paths out_data_file = "./output/preprocess/3/Height/GSE106800.csv" out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE106800.csv" out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE106800.csv" json_path = "./output/preprocess/3/Height/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From background info: "Microarray analysis was performed on skeletal muscle biopsies" # This indicates gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type Conversion # Height data is available in row 3 trait_row = 3 def convert_trait(x): try: # Extract numeric value after colon and space return float(x.split(': ')[1]) except: return None # Age data is available in row 2 age_row = 2 def convert_age(x): try: return float(x.split(': ')[1]) except: return None # Gender data is available in row 0 but only one value (male) gender_row = None # Constant features are not useful def convert_gender(x): try: val = x.split(': ')[1].lower() if val == 'male': return 1 elif val == 'female': return 0 return None except: return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None)) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # Review the gene identifiers # The identifiers are numeric codes like '16650001', '16650003' etc. # These are not standard gene symbols (like BRCA1, TNF etc.) # They appear to be probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Get gene mapping dataframe from gene annotation # 'ID' column in gene_metadata contains probe IDs that match gene expression data # 'gene_assignment' contains gene symbols in a messy format mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from skeletal muscle biopsies and height measurements from subjects" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)