# Path Configuration from tools.preprocess import * # Processing context trait = "Height" cohort = "GSE117525" # Input paths in_trait_dir = "../DATA/GEO/Height" in_cohort_dir = "../DATA/GEO/Height/GSE117525" # Output paths out_data_file = "./output/preprocess/3/Height/GSE117525.csv" out_gene_data_file = "./output/preprocess/3/Height/gene_data/GSE117525.csv" out_clinical_data_file = "./output/preprocess/3/Height/clinical_data/GSE117525.csv" json_path = "./output/preprocess/3/Height/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info mentioning "skeletal muscle transcriptome" and "gene expression profiling" is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Row identifiers trait_row = 4 # Height data in row 4 age_row = 3 # Age data in row 3 gender_row = 1 # Gender data in row 1 # 2.2 Conversion functions def convert_trait(x): if pd.isna(x): return None try: # Extract height value after colon and convert to float height = float(x.split(': ')[1]) return height except: return None def convert_age(x): if pd.isna(x): return None try: # Extract age value and convert to float age = float(x.split(': ')[1]) return age except: return None def convert_gender(x): if pd.isna(x): return None try: # Extract gender value after colon gender = x.split(': ')[1].strip().upper() if gender == 'F': return 0 elif gender == 'M': return 1 return None except: return None # 3. Save metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file with gzip.open(matrix_file_path, 'rt') as file: for i, line in enumerate(file): if "!series_matrix_table_begin" in line: skip_rows = i + 1 break genetic_data = pd.read_csv(matrix_file_path, compression='gzip', skiprows=skip_rows-1, sep='\t', comment='!', header=0, index_col=0) # Print information about the data structure print("First few rows of the genetic data:") print(genetic_data.head()) print("\nShape of genetic data:", genetic_data.shape) print("\nColumn names:", genetic_data.columns.tolist()) # Looking at the identifiers like "100009676_at", "10000_at", "10001_at", etc. # These appear to be probe IDs from a microarray platform rather than standard human gene symbols # The "_at" suffix is characteristic of Affymetrix arrays # These identifiers will need to be mapped to official gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Parse the Description column to extract gene symbols mapping_data = pd.DataFrame({ 'ID': gene_metadata['ID'], 'Gene': gene_metadata['Description'].apply(lambda x: x.split(',')[0].strip() if pd.notna(x) else None) }) print("Preview of gene mapping data:") print(json.dumps(preview_df(mapping_data), indent=2)) # Get gene mapping dataframe from gene annotation data # ID column matches the probe IDs in gene expression data (e.g. "100009676_at") # Description column contains gene names that we need to map to mapping_df = pd.DataFrame({ 'ID': gene_metadata['ID'], 'Gene': gene_metadata['Description'].apply(lambda x: extract_human_gene_symbols(x)[0] if pd.notna(x) and extract_human_gene_symbols(x) else None) }) # Apply gene mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the mapped gene data print("\nPreview of gene expression data after mapping:") print(gene_data.head()) print("\nShape of gene expression data:", gene_data.shape) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Clean height measurements - filter out weight values that were incorrectly recorded as height linked_data = linked_data[linked_data[trait] < 3.0] # Keep only plausible height values in meters # 4. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 5. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Final validation and save metadata note = "Dataset contains gene expression data from muscle tissue. Original height measurements had inconsistent units - filtered to keep only plausible meter values." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 7. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)