# Path Configuration from tools.preprocess import * # Processing context trait = "Hemochromatosis" cohort = "GSE50579" # Input paths in_trait_dir = "../DATA/GEO/Hemochromatosis" in_cohort_dir = "../DATA/GEO/Hemochromatosis/GSE50579" # Output paths out_data_file = "./output/preprocess/3/Hemochromatosis/GSE50579.csv" out_gene_data_file = "./output/preprocess/3/Hemochromatosis/gene_data/GSE50579.csv" out_clinical_data_file = "./output/preprocess/3/Hemochromatosis/clinical_data/GSE50579.csv" json_path = "./output/preprocess/3/Hemochromatosis/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on series title "Expression profiling" and no mention of miRNA/methylation is_gene_available = True # 2.1 Data Availability # For trait - index 1 has "etiology: genetic hemochromatosis" trait_row = 1 # For gender - index 3 has gender data gender_row = 3 # For age - index 5 has age data age_row = 5 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait value to binary (0=control, 1=case)""" if pd.isna(value) or value == 'n.d.': return None if 'hemochromatosis' in value.lower(): return 1 return 0 def convert_age(value: str) -> float: """Convert age value to continuous numeric""" if pd.isna(value) or value == 'n.d.': return None age = value.split(':')[1].strip() if age == 'n.d.': return None return float(age) def convert_gender(value: str) -> int: """Convert gender value to binary (0=female, 1=male)""" if pd.isna(value) or value == 'n.d.': return None gender = value.split(':')[1].strip() if gender == 'n.d.': return None return 1 if gender.lower() == 'male' else 0 # 3. Save metadata # Initial filtering using validate_and_save_cohort_info is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview extracted features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # The identifiers look like probe IDs (Agilent microarray probes starting with A_19_P), not standard human gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Extract gene mapping columns from annotation data # 'ID' column contains probe IDs matching gene expression data # 'GENE_SYMBOL' contains the target gene symbols gene_mapping = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, gene_mapping) # Preview the first few rows of gene expression data print("Preview of gene expression data after mapping:") print(preview_df(gene_data)) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from skeletal muscle biopsies and height measurements from subjects" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)