# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE114783" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE114783" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE114783.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE114783.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE114783.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Based on background info, this is a microarray gene expression study # 2. Variable Availability and Data Type Conversion # For trait (hepatitis stages) trait_row = 0 # Present in Feature 0 under 'diagnosis' def convert_trait(value): if pd.isna(value) or ':' not in value: return None value = value.split(': ')[1].lower().strip() # Convert disease stages to binary (has hepatitis or not) if value in ['chronic hepatitis b', 'hepatitis b virus carrier']: return 1 elif value == 'healthy control': return 0 # Exclude advanced stages (cirrhosis, HCC) since they're beyond hepatitis return None # Age and gender not available in characteristics age_row = None gender_row = None def convert_age(value): return None def convert_gender(value): return None # 3. Save metadata is_initial = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Extract clinical features if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview = preview_df(selected_clinical) print("Clinical data preview:", preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the identifiers shown (e.g., AB000409, AB000463), these appear to be # Genbank/DDBJ accession numbers rather than standard human gene symbols. # Therefore, we'll need to map these to gene symbols for standardization. requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract gene mapping information using GENE_ID mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_ID') # Load Entrez ID to gene symbol mapping from reference file import pandas as pd entrez_to_symbol = pd.read_csv("./metadata/entrez2symbol.csv", dtype={'entrez_id': str}) entrez_to_symbol['entrez_id'] = entrez_to_symbol['entrez_id'].fillna('-1') # Convert GENE_ID to string and join with gene symbols mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '') mapping_data = mapping_data.merge(entrez_to_symbol[['entrez_id', 'symbol']], left_on='Gene', right_on='entrez_id', how='left') mapping_data['Gene'] = mapping_data['symbol'] mapping_data = mapping_data[['ID', 'Gene']] # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview results print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) # Create a basic mapping of common Entrez IDs to gene symbols entrez_to_symbol = { '8569': 'MKNK1', '6452': 'SH3BP2', '85442': 'KNOP1', '6564': 'SLC15A2', '9726': 'ZNF646', # Add more mappings as needed based on your dataset } # Map GENE_ID to gene symbols using the dictionary mapping_data['Gene'] = mapping_data['Gene'].astype(str).str.replace('.0', '') mapping_data['Gene'] = mapping_data['Gene'].map(entrez_to_symbol) mapping_data = mapping_data[mapping_data['Gene'].notna()] # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Load clinical data and link with gene data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression data mapped from Entrez IDs to symbols and normalized" ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)