# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE124719" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE124719" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE124719.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE124719.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE124719.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # Check if gene expression data is available is_gene_available = True # Yes, the series title indicates gene expression data in blood and muscle # Find rows containing trait, age, and gender info # For trait: treatment in row 1 indicates hepatitis status (FENDRIXE = HBV vaccine) trait_row = 1 # For age: found in row 7 and row 11 age_row = 11 # row 11 has more complete age data # For gender: found in row 6 and row 10 gender_row = 10 # row 10 has more complete gender data # Define conversion functions def convert_trait(value: str) -> int: """Convert treatment to binary hepatitis status""" if pd.isna(value): return None value = value.split(': ')[1].strip() # FENDRIXE group received HBV vaccine, indicating hepatitis status return 1 if value == 'FENDRIXE' else 0 def convert_age(value: str) -> float: """Convert age string to numeric value""" if pd.isna(value): return None value = value.split(': ')[1].strip() # Extract numeric age value return float(value.replace('y', '')) def convert_gender(value: str) -> int: """Convert gender to binary (0=female, 1=male)""" if pd.isna(value): return None value = value.split(': ')[1].strip() return 1 if value.lower() == 'male' else 0 # Initial validation and save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # Extract clinical features clinical_df = geo_select_clinical_features( clinical_data, trait='Hepatitis', trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print(preview_df(clinical_df)) clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Review gene identifiers and indicate if mapping is needed # These are numeric row IDs, not gene symbols, so mapping will be required requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata))