# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE125860" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE125860" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE125860.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE125860.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE125860.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data is_gene_available = True # Affymetrix arrays indicate gene expression data # 2.1 Data Row Identification trait_row = 7 # hepatitis b concentration post-vaccination indicates disease status age_row = 17 # age information gender_row = 18 # gender information # 2.2 Data Type Conversion Functions def convert_trait(x): try: # Extract value after colon and strip whitespace val = x.split(':', 1)[1].strip() if val == 'NA': return None # Convert to float and binarize based on threshold val = float(val.replace('<', '').replace('mIU/mL', '').strip()) return 1 if val >= 10 else 0 # Common threshold for HBV protection except: return None def convert_age(x): try: return int(x.split(':', 1)[1].strip()) except: return None def convert_gender(x): try: gender = x.split(':', 1)[1].strip() if gender == 'F': return 0 elif gender == 'M': return 1 return None except: return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender ) # Preview the data preview = preview_df(selected_clinical) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on the gene identifiers in the data ('AFFX-' prefix suggests Affymetrix probe IDs), # these are probe IDs that need to be mapped to gene symbols requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Since gene mapping information is missing in the SOFT file # Print message and save original probe-level data directly print("Warning: Gene mapping information is not available in the SOFT file.") print("Saving probe-level expression data without gene mapping.") # Save probe-level expression data gene_data.to_csv(out_gene_data_file)