# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE152738" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE152738" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE152738.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE152738.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE152738.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # The series title and design mentions gene expression microarray analysis using Affymetrix arrays is_gene_available = True # 2.1 Data Availability # age_stage info is in row 0 trait_row = 0 # We can infer trait status from age stage age_row = 0 # Age data is available in age stage gender_row = None # Gender data not available # 2.2 Data Type Conversion Functions def convert_trait(x): """Convert age stage to binary trait (0=young, 1=old)""" if not isinstance(x, str): return None x = x.split(": ")[1].lower() if ":" in x else x.lower() if "young" in x: return 0 elif "old" in x: return 1 return None def convert_age(x): """Convert age stage to continuous age values""" if not isinstance(x, str): return None x = x.split(": ")[1].lower() if ":" in x else x.lower() if "young" in x: return 30 # Midpoint of 18-40 range elif "old" in x: return 50 # Conservative estimate for >40 return None # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(False, cohort, json_path, is_gene_available, is_trait_available) # 4. Clinical Feature Extraction selected_clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age) # Preview and save clinical data preview_df(selected_clinical_df) selected_clinical_df.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # 1. Identify the mapping columns # 'ID' in gene_metadata maps to the probe IDs in gene_data # 'Gene Symbol' in gene_metadata contains the gene symbols mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') # 2. Apply the mapping to convert probe data to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # 3. Normalize gene symbols using synonym information to standardize format gene_data = normalize_gene_symbols_in_index(gene_data) # First verify data validity if gene_data.empty or selected_clinical_df.empty: is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=False, is_biased=None, df=None, note="Data preprocessing failed due to invalid gene or clinical data." ) else: # 1. Save gene expression data gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Print data info for debugging print("Clinical data shape:", selected_clinical_df.shape) print("Gene data shape:", gene_data.shape) print("Linked data shape:", linked_data.shape) print("\nLinked data preview:") print(linked_data.head()) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains normalized gene expression data and clinical information." ) # 6. Save data if usable if is_usable: linked_data.to_csv(out_data_file) # First validate both the gene and clinical data if gene_data.empty or gene_data.isnull().all().all(): print("Gene expression data is invalid") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=False, df=None, is_biased=None, note="Gene expression data preprocessing failed" ) elif selected_clinical_df.empty or selected_clinical_df.isnull().all().all(): print("Clinical data is invalid") is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=False, is_trait_available=False, df=None, is_biased=None, note="Clinical data preprocessing failed" ) else: # Save normalized gene data gene_data.to_csv(out_gene_data_file) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Print data info for debugging print("Clinical data shape:", selected_clinical_df.shape) print("Gene data shape:", gene_data.shape) print("Linked data shape:", linked_data.shape) print("\nLinked data preview:") print(linked_data.head()) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate and save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains normalized gene expression data and clinical information." ) # Save linked data if usable if is_usable: linked_data.to_csv(out_data_file)