# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE45032" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE45032" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE45032.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE45032.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE45032.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and summary, this is a gene expression microarray study is_gene_available = True # 2. Data Type Conversion Functions def convert_trait(value): # Binary: 0 for CHC, 1 for HCC if not value or ':' not in value: return None value = value.split(': ')[1].lower() if 'hepatitis' in value or 'chc' in value: return 0 elif 'carcinoma' in value or 'hcc' in value: return 1 return None def convert_age(value): # Continuous if not value or ':' not in value: return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value): # Binary: 0 for female, 1 for male if not value or ':' not in value: return None value = value.split(': ')[1].lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 2.1 Data Row Identification trait_row = 0 # cell type field contains trait info age_row = 3 # age(yrs) field gender_row = 2 # gender field # 3. Save Initial Metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Extract Clinical Features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features preview_result = preview_df(clinical_features) print("Preview of clinical features:") print(preview_result) # Save to CSV clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Looking at identifiers, which are just numbers starting from 1 # These are not human gene symbols and will need to be mapped requires_gene_mapping = True # Extract gene annotation data gene_metadata = get_gene_annotation(soft_file) # Preview the annotation data print("Column names:", gene_metadata.columns.tolist()) print("\nFirst few rows preview:") print(preview_df(gene_metadata)) # Extract gene mapping - using 'ID' as identifier column and 'GeneName' as gene symbol column mapping_data = get_gene_mapping(gene_metadata, 'ID', 'GeneName') # Drop control probes based on GeneName being control types control_names = ['GE_BrightCorner', 'DarkCorner'] mapping_data = mapping_data[~mapping_data['Gene'].isin(control_names)] # Apply gene mapping to convert probe level data to gene expression gene_data = apply_gene_mapping(gene_data, mapping_data) # Preview the result print("Shape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped data:") print(gene_data.head()) print("\nFirst 20 gene symbols:") print(gene_data.index[:20]) # 1. Since gene symbol normalization failed, we'll work with probe-level expression data # Save the probe-level expression data gene_data.to_csv(out_gene_data_file) # 2. Load clinical data and link with probe-level expression data selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Record cohort information with probe-level data note is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains numerical probe-level expression data (gene symbol normalization was skipped) and clinical data." ) # 6. Save data if usable if is_usable: linked_data.to_csv(out_data_file)