# Path Configuration from tools.preprocess import * # Processing context trait = "Hepatitis" cohort = "GSE85550" # Input paths in_trait_dir = "../DATA/GEO/Hepatitis" in_cohort_dir = "../DATA/GEO/Hepatitis/GSE85550" # Output paths out_data_file = "./output/preprocess/3/Hepatitis/GSE85550.csv" out_gene_data_file = "./output/preprocess/3/Hepatitis/gene_data/GSE85550.csv" out_clinical_data_file = "./output/preprocess/3/Hepatitis/clinical_data/GSE85550.csv" json_path = "./output/preprocess/3/Hepatitis/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data using specified prefixes background_info, clinical_data = get_background_and_clinical_data( matrix_file, prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] ) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene expression data availability # This dataset has liver biopsy samples for expression profiling # No indicators of miRNA/methylation data, likely contains gene expression data is_gene_available = True # 2. Variable availability and data type conversion # Looking at sample characteristics: # trait_row = 2 (time_point indicates disease progression in hepatitis fibrosis) # age_row = None as age data is not recorded # gender_row = None as gender data is not recorded trait_row = 2 age_row = None gender_row = None def convert_trait(x): if not isinstance(x, str): return None value = x.split(': ')[-1].strip() if value == 'Baseline': return 0 # Early/mild fibrosis elif value == 'Follow-up': return 1 # Progressed fibrosis return None def convert_age(x): # Not needed since age data not available return None def convert_gender(x): # Not needed since gender data not available return None # 3. Save metadata about dataset usability is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract clinical features since trait_row is not None clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the extracted features preview = preview_df(clinical_features) print("Preview of clinical features:") print(preview) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # Based on examination of the gene identifiers shown in the data, they appear to be human gene symbols (e.g. AARS, ABLIM1, ACOT2, etc.) # These are official HGNC gene symbols, so no mapping is needed requires_gene_mapping = False # Skip normalization since data already uses standard symbols gene_data.to_csv(out_gene_data_file) # Load clinical data from previous steps selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Evaluate bias in features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Record cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Contains standard gene symbol expression data and clinical data." ) # Save data if usable if is_usable: linked_data.to_csv(out_data_file)