# Path Configuration from tools.preprocess import * # Processing context trait = "High-Density_Lipoprotein_Deficiency" cohort = "GSE34945" # Input paths in_trait_dir = "../DATA/GEO/High-Density_Lipoprotein_Deficiency" in_cohort_dir = "../DATA/GEO/High-Density_Lipoprotein_Deficiency/GSE34945" # Output paths out_data_file = "./output/preprocess/3/High-Density_Lipoprotein_Deficiency/GSE34945.csv" out_gene_data_file = "./output/preprocess/3/High-Density_Lipoprotein_Deficiency/gene_data/GSE34945.csv" out_clinical_data_file = "./output/preprocess/3/High-Density_Lipoprotein_Deficiency/clinical_data/GSE34945.csv" json_path = "./output/preprocess/3/High-Density_Lipoprotein_Deficiency/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Based on background info, this is a SNP genotyping study using GoldenGate bead array # Not gene expression data is_gene_available = False # 2. Variable Availability and Data Type Conversion # 2.1 Data Row Identification # For trait: # From field 2, HDL (trait of interest) status can be inferred from APOC3 levels # Not constant since values vary widely trait_row = 2 # For age: Not available in characteristics data age_row = None # For gender: Not available in characteristics data gender_row = None # 2.2 Conversion Functions def convert_trait(value: str) -> Optional[int]: # Extract APOC3 level change after ':' if ":" not in value: return None try: change = float(value.split(":")[1].strip()) # Negative change (reduction) in APOC3 indicates HDL deficiency # Using threshold of -20% change return 1 if change < -20 else 0 except: return None def convert_age(value: str) -> Optional[float]: return None # Not used since age data unavailable def convert_gender(value: str) -> Optional[int]: return None # Not used since gender data unavailable # 3. Save Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed clinical data preview_df(clinical_df) # Save to CSV os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) clinical_df.to_csv(out_clinical_data_file)