# Path Configuration from tools.preprocess import * # Processing context trait = "Huntingtons_Disease" cohort = "GSE34721" # Input paths in_trait_dir = "../DATA/GEO/Huntingtons_Disease" in_cohort_dir = "../DATA/GEO/Huntingtons_Disease/GSE34721" # Output paths out_data_file = "./output/preprocess/3/Huntingtons_Disease/GSE34721.csv" out_gene_data_file = "./output/preprocess/3/Huntingtons_Disease/gene_data/GSE34721.csv" out_clinical_data_file = "./output/preprocess/3/Huntingtons_Disease/clinical_data/GSE34721.csv" json_path = "./output/preprocess/3/Huntingtons_Disease/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability is_gene_available = True # Yes, based on background info describing genome-wide gene expression data # 2.1 Variable availability trait_row = 1 # HTT CAG repeat length is recorded in row 1 gender_row = 0 # Gender is recorded in row 0 age_row = None # Age data not available # 2.2 Data type conversion functions def convert_trait(value: str) -> Optional[int]: if not value or ':' not in value: return None try: # Extract CAG repeat length number cag_length = int(value.split(': ')[1]) # HD threshold is typically >35 repeats return 1 if cag_length > 35 else 0 except: return None def convert_gender(value: str) -> Optional[int]: if not value or ':' not in value: return None gender = value.split(': ')[1].lower() if gender == 'female': return 0 elif gender == 'male': return 1 return None def convert_age(value: str) -> Optional[float]: # Not used but defined for completeness return None # 3. Save metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=True) # trait_row is not None # 4. Extract clinical features clinical_df = geo_select_clinical_features(clinical_data, trait="HD", trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender) print("Preview of clinical data:") print(preview_df(clinical_df)) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These are Affymetrix probe IDs from an older microarray platform (e.g. HG-U133) # They need to be mapped to official gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Get mapping between probe IDs and gene symbols from annotation data mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # Convert probe measurements to gene expression values gene_data = apply_gene_mapping(genetic_data, mapping_df) # Normalize the gene symbols in the index gene_data = normalize_gene_symbols_in_index(gene_data) # Save gene expression data gene_data.to_csv(out_gene_data_file) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) gene_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from liver tissue samples of patients with various liver conditions including hemochromatosis" is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)