# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertension" cohort = "GSE149256" # Input paths in_trait_dir = "../DATA/GEO/Hypertension" in_cohort_dir = "../DATA/GEO/Hypertension/GSE149256" # Output paths out_data_file = "./output/preprocess/3/Hypertension/GSE149256.csv" out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE149256.csv" out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE149256.csv" json_path = "./output/preprocess/3/Hypertension/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") def convert_age(value: str) -> Optional[float]: if not value or ':' not in value: return None try: return float(value.split(': ')[1]) except: return None def convert_gender(value: str) -> Optional[int]: if not value or ':' not in value: return None gender = value.split(': ')[1].lower() if 'female' in gender: return 0 elif 'male' in gender: return 1 return None def convert_trait(value: str) -> Optional[int]: if not value or ':' not in value: return None status = value.split(': ')[1].lower() if 'above' in status: return 0 # Not in poverty -> less likely to have hypertension elif 'below' in status: return 1 # In poverty -> more likely to have hypertension return None # Gene expression data is available (microarray data mentioned in background) is_gene_available = True # Row indices for variables trait_row = 2 # Poverty status used as proxy for hypertension risk age_row = 3 gender_row = 0 # Initial validation and save metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # Extract clinical features since trait_row is not None clinical_features = geo_select_clinical_features(clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview and save clinical data preview = preview_df(clinical_features) print(f"Preview of clinical features:\n{preview}") clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene IDs start with "ILMN_" which indicates these are Illumina probe IDs # These need to be mapped to standard human gene symbols for analysis requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print example rows showing the mapping information columns print("\nSample mapping columns ('ID' and 'SYMBOL'):") print("\nFirst 5 rows:") print(gene_annotation[['ID', 'SYMBOL']].head().to_string()) # Explain the format print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'SYMBOL' column: Standard human gene symbols") # Get mapping between probe IDs and gene symbols mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SYMBOL') # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_data) # Check the resulting data print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # Save the gene expression data gene_data.to_csv(out_gene_data_file) # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)