# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertension" cohort = "GSE151158" # Input paths in_trait_dir = "../DATA/GEO/Hypertension" in_cohort_dir = "../DATA/GEO/Hypertension/GSE151158" # Output paths out_data_file = "./output/preprocess/3/Hypertension/GSE151158.csv" out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE151158.csv" out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE151158.csv" json_path = "./output/preprocess/3/Hypertension/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on series title and summary, this dataset studies transcriptional changes and gene expression # of 594 genes in liver tissue, so gene expression data is available is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Find row indices # Trait (Hypertension) data is available in row 7 trait_row = 7 # Age data is available in row 1 age_row = 1 # Gender data is available in row 2 gender_row = 2 # 2.2 Data type conversion functions def convert_trait(x): if pd.isna(x): return None # Extract value after colon and strip whitespace value = x.split(":")[1].strip() # Convert to binary: Y->1, N->0 if value == "Y": return 1 elif value == "N": return 0 return None def convert_age(x): if pd.isna(x): return None # Extract value after colon and convert to float try: value = float(x.split(":")[1].strip()) return value except: return None def convert_gender(x): if pd.isna(x): return None # Extract value after colon and strip whitespace value = x.split(":")[1].strip() # Convert to binary: F->0, M->1 if value == "F": return 0 elif value == "M": return 1 return None # 3. Save metadata for initial filtering is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, extract clinical features from the existing clinical_data selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview the data print(preview_df(selected_clinical_df)) # Save clinical data os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers appear to be standard human gene symbols (e.g. ABCB1, ABCF1, ABL1) # They match official HUGO gene nomenclature committee (HGNC) symbols # No mapping needed - these are already canonical gene symbols requires_gene_mapping = False # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)