# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertension" cohort = "GSE181339" # Input paths in_trait_dir = "../DATA/GEO/Hypertension" in_cohort_dir = "../DATA/GEO/Hypertension/GSE181339" # Output paths out_data_file = "./output/preprocess/3/Hypertension/GSE181339.csv" out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE181339.csv" out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE181339.csv" json_path = "./output/preprocess/3/Hypertension/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # Background shows it's a microarray gene expression study on PBMCs # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 1 # 'group' field contains hypertension info for MONW subjects gender_row = 0 # 'gender' field age_row = 2 # 'age' field # 2.2 Data Type Conversion Functions def convert_trait(x): # Based on background, MONW group has hypertension if not x or ':' not in x: return None value = x.split(':')[1].strip() if value == 'MONW': return 1 # Has hypertension elif value in ['NW', 'OW/OB']: return 0 # No hypertension return None def convert_age(x): if not x or ':' not in x: return None try: value = x.split(':')[1].strip() return float(value) # Convert to continuous numeric value except: return None def convert_gender(x): if not x or ':' not in x: return None value = x.split(':')[1].strip().lower() if value == 'woman': return 0 elif value == 'man': return 1 return None # 3. Save Metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected features preview = preview_df(selected_clinical) print("Preview of selected clinical features:") print(preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # The gene identifiers appear to be probe IDs (numeric format). # They are not human gene symbols and need to be mapped. # This is likely from an Illumina or Affymetrix microarray platform # requiring mapping from probe IDs to gene symbols. requires_gene_mapping = True # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print example rows showing the mapping information columns print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):") print("\nFirst 5 rows:") print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string()) # Explain the format print("\nNote: Gene mapping will use:") print("'ID' column: Probe identifiers") print("'GENE_SYMBOL' column: Standard human gene symbols") # Get gene mapping from annotation data mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) # Normalize gene symbols using synonym dictionary gene_data = normalize_gene_symbols_in_index(gene_data) # Print shape and preview to verify mapping results print("Shape of gene expression data after mapping:", gene_data.shape) print("\nFirst few rows after mapping:") print(gene_data.head()) # Save mapped gene expression data gene_data.to_csv(out_gene_data_file) # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)