# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertension" cohort = "GSE256539" # Input paths in_trait_dir = "../DATA/GEO/Hypertension" in_cohort_dir = "../DATA/GEO/Hypertension/GSE256539" # Output paths out_data_file = "./output/preprocess/3/Hypertension/GSE256539.csv" out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE256539.csv" out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE256539.csv" json_path = "./output/preprocess/3/Hypertension/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability is_gene_available = True # According to the background info "whole genome sequencing" is performed # 2. Variable Availability and Row IDs trait_row = None # From background info, the trait (Hypertension) status is constant - all are IPAH patients age_row = None # Age info not available gender_row = None # Gender info not available # Define conversion functions def convert_trait(val: str) -> int: # All subjects have IPAH so should be 1 return 1 def convert_age(val: str) -> float: return None def convert_gender(val: str) -> int: return None # 3. Save metadata validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=(trait_row is not None) ) # 4. Skip clinical feature extraction since trait_row is None # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) # All identifiers shown in the data appear to be valid human gene symbols. # For example: A2M, A4GALT, AAAS, AACS, AAGAB etc. are standard HGNC gene symbols. # These symbols are the official gene nomenclature for human genes, so no mapping is needed. requires_gene_mapping = False # 1. Normalize and save gene data gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Record that dataset lacks trait data validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, note="All samples are hypertension patients, so trait data is not suitable for analysis." )