# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertension" cohort = "GSE74144" # Input paths in_trait_dir = "../DATA/GEO/Hypertension" in_cohort_dir = "../DATA/GEO/Hypertension/GSE74144" # Output paths out_data_file = "./output/preprocess/3/Hypertension/GSE74144.csv" out_gene_data_file = "./output/preprocess/3/Hypertension/gene_data/GSE74144.csv" out_clinical_data_file = "./output/preprocess/3/Hypertension/clinical_data/GSE74144.csv" json_path = "./output/preprocess/3/Hypertension/cohort_info.json" # Get file paths soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file) # Get unique values per clinical feature sample_characteristics = get_unique_values_by_row(clinical_data) # Print background info print("Dataset Background Information:") print(f"{background_info}\n") # Print sample characteristics print("Sample Characteristics:") for feature, values in sample_characteristics.items(): print(f"Feature: {feature}") print(f"Values: {values}\n") # 1. Gene Expression Data Availability # Based on the series title and overall design mentioning transcriptomic analysis # and gene expression profiling of leukocytes, this dataset contains gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # Trait (Hypertension) can be determined from Feature 0 status trait_row = 0 # Age and gender are not explicitly mentioned in characteristics age_row = None gender_row = None # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert hypertension status to binary""" if not isinstance(value, str): return None value = value.split(': ')[-1].lower() if 'hypertensive patient' in value: return 1 elif 'control' in value: return 0 return None # No age conversion function needed convert_age = None # No gender conversion function needed convert_gender = None # 3. Save initial metadata is_trait_available = trait_row is not None _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(clinical_features)) # Save clinical features clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from matrix file gene_data = get_genetic_data(matrix_file) # Print first 20 row IDs and shape of data to help debug print("Shape of gene expression data:", gene_data.shape) print("\nFirst few rows of data:") print(gene_data.head()) print("\nFirst 20 gene/probe identifiers:") print(gene_data.index[:20]) # Inspect a snippet of raw file to verify identifier format import gzip with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: lines = [] for i, line in enumerate(f): if "!series_matrix_table_begin" in line: # Get the next 5 lines after the marker for _ in range(5): lines.append(next(f).strip()) break print("\nFirst few lines after matrix marker in raw file:") for line in lines: print(line) requires_gene_mapping = True # Get file paths import gzip # First inspect raw file content to find where platform annotation begins platform_start = False data_preview = [] with gzip.open(soft_file, 'rt', encoding='utf-8') as f: for line in f: if line.startswith('^PLATFORM'): platform_start = True continue if platform_start and len(data_preview) < 20: data_preview.append(line.strip()) print("Platform annotation preview:") print("\n".join(data_preview)) print("\n" + "="*80 + "\n") # Extract gene annotation with focus on platform section prefixes = ['!Platform_table_begin'] # Changed to target platform table gene_annotation = get_gene_annotation(soft_file, prefixes) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation columns and first few rows:") print(preview_df(gene_annotation)) # Additional inspection of columns that might contain probe-gene mapping columns = gene_annotation.columns.tolist() print("\nAll columns:", columns) for col in columns: non_null = gene_annotation[col].notna().sum() if non_null > 0: print(f"\nColumn '{col}' has {non_null} non-null values") print("Sample values:", gene_annotation[col].dropna().head().tolist()) # Extract gene annotation data targeting the platform table with gzip.open(soft_file, 'rt', encoding='utf-8') as f: content = f.read() table_start = content.find('!Platform_table_begin') table_end = content.find('!Platform_table_end') table_content = content[table_start:table_end] # Convert table content to DataFrame gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t', skiprows=1) # Print column info to verify extraction print("Column names in gene annotation:") print(gene_annotation.columns.tolist()) print("\nPreview of gene annotation data:") print(gene_annotation.head()) # Use ID and GENE_SYMBOL columns for mapping mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply the mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # Preview the mapped gene expression data print("\nShape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # Save gene expression data gene_data.to_csv(out_gene_data_file) # Extract gene annotation targeting the platform table with gzip.open(soft_file, 'rt') as f: content = f.read() # Find platform section start platform_start = content.find('^PLATFORM') # Find table markers within platform section table_start = content.find('!Platform_table_begin', platform_start) table_end = content.find('!Platform_table_end', table_start) if table_start != -1 and table_end != -1: # Extract content between markers and skip the header line table_content = content[content.find('\n', table_start):table_end] gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t') print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation columns and first few rows:") print(gene_annotation.head()) print("\nColumn names:") print(gene_annotation.columns.tolist()) # Preview non-empty values in relevant columns for col in gene_annotation.columns: non_null = gene_annotation[col].notna().sum() if non_null > 0: print(f"\nColumn '{col}' has {non_null} non-null values") print("Sample values:", gene_annotation[col].dropna().head().tolist()) else: print("Platform table markers not found in file") # 1. Extract gene annotation from SOFT file platform_section = '' table_content = '' inside_platform = False inside_table = False with gzip.open(soft_file, 'rt') as f: for line in f: if line.startswith('^PLATFORM'): inside_platform = True elif line.startswith('!Platform_table_begin') and inside_platform: inside_table = True continue elif line.startswith('!Platform_table_end'): break elif inside_table: table_content += line elif inside_platform: platform_section += line # Parse table content into DataFrame gene_annotation = pd.read_csv(io.StringIO(table_content), sep='\t') # Create mapping between probe IDs and gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply mapping to convert probe data to gene data gene_data = apply_gene_mapping(gene_data, mapping_df) # Normalize gene symbols using NCBI database gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # Load clinical data clinical_data = pd.read_csv(out_clinical_data_file, index_col=0) # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data) # Handle missing values linked_data = handle_missing_values(linked_data, trait) # Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Gene expression study comparing hypertensive patients with/without left ventricular remodeling" ) # Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file) # Get file paths using library function soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # Extract gene annotation from SOFT file and get meaningful data gene_annotation = get_gene_annotation(soft_file) # Preview gene annotation data print("Gene annotation shape:", gene_annotation.shape) print("\nGene annotation preview:") print(preview_df(gene_annotation)) # Print non-null counts for each column print("\nNumber of non-null values in each column:") print(gene_annotation.count()) # Print a sample of rows that have non-null gene symbols print("\nSample rows with non-null gene symbols:") non_null_genes = gene_annotation[gene_annotation['GENE_SYMBOL'].notna()] print(preview_df(non_null_genes)) # Count unique IDs and gene symbols print("\nNumber of unique values:") print("Unique IDs:", gene_annotation['ID'].nunique()) if 'GENE_SYMBOL' in gene_annotation.columns: print("Unique gene symbols:", gene_annotation['GENE_SYMBOL'].dropna().nunique()) # Based on the gene identifiers preview, we need ID and GENE_SYMBOL columns mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # Apply mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # Preview the mapped gene expression data print("\nShape of mapped gene expression data:", gene_data.shape) print("\nFirst few rows of mapped gene data:") print(gene_data.head()) # 1. Load clinical data and save normalized gene data selected_clinical = pd.read_csv(out_clinical_data_file, index_col=0) gene_data.index = gene_data.index.str.replace('-mRNA', '') gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Check for biased features and remove them if needed is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Validate and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Study comparing transcriptional profiles between idiopathic non-cirrhotic portal hypertension patients, cirrhosis patients, and normal controls" ) # 6. Save linked data if usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)