# Path Configuration from tools.preprocess import * # Processing context trait = "Hypertrophic_Cardiomyopathy" cohort = "GSE36961" # Input paths in_trait_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy" in_cohort_dir = "../DATA/GEO/Hypertrophic_Cardiomyopathy/GSE36961" # Output paths out_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/GSE36961.csv" out_gene_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/gene_data/GSE36961.csv" out_clinical_data_file = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/clinical_data/GSE36961.csv" json_path = "./output/preprocess/3/Hypertrophic_Cardiomyopathy/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # Series title and summary indicate this is transcriptome profiling data is_gene_available = True # 2.1 Data Availability # Trait is in row 3, gender in row 0, age in row 1 trait_row = 3 # disease state / sample type shows HCM vs control gender_row = 0 # Sex field age_row = 1 # age (yrs) field # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> int: """Convert trait value to binary (1=case, 0=control)""" if pd.isna(value): return None value = value.split(": ")[-1].lower() if "hypertrophic cardiomyopathy" in value or "hcm" in value or "case" in value: return 1 elif "control" in value: return 0 return None def convert_age(value: str) -> float: """Convert age value to continuous numeric""" if pd.isna(value): return None try: return float(value.split(": ")[-1]) except: return None def convert_gender(value: str) -> int: """Convert gender to binary (0=female, 1=male)""" if pd.isna(value): return None value = value.split(": ")[-1].lower() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata # trait_row is not None, so trait data is available is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Extract Clinical Features selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the clinical data preview_result = preview_df(selected_clinical) # Save clinical data selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) requires_gene_mapping = False # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data comparing cardiac tissue from patients with hypertrophic cardiomyopathy (HCM) versus control donor cardiac tissues." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)