# Path Configuration from tools.preprocess import * # Processing context trait = "Hypothyroidism" cohort = "GSE151158" # Input paths in_trait_dir = "../DATA/GEO/Hypothyroidism" in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE151158" # Output paths out_data_file = "./output/preprocess/3/Hypothyroidism/GSE151158.csv" out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE151158.csv" out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE151158.csv" json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Background shows this is gene expression study of 594 genes # 2.1 Data Availability trait_row = 12 # hypothyroidism data found in row 12 age_row = 1 # age data found in row 1 gender_row = 2 # gender data found in row 2 as "Sex" # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None value = x.split(": ")[1] if ": " in x else x if value.upper() == 'Y': return 1 elif value.upper() == 'N': return 0 return None def convert_age(x): if pd.isna(x): return None try: age = int(x.split(": ")[1]) return age except: return None def convert_gender(x): if pd.isna(x): return None value = x.split(": ")[1] if ": " in x else x if value.upper() == 'F': return 0 elif value.upper() == 'M': return 1 return None # 3. Save Metadata validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None) # 4. Clinical Feature Extraction if trait_row is not None: clinical_features_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the data preview = preview_df(clinical_features_df) print(preview) # Save to CSV clinical_features_df.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These IDs are standard HUGO gene symbols - e.g. ABCB1, ABCF1, ABL1 are well-known gene symbols # No mapping needed as they are already in the correct format requires_gene_mapping = False # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data studying hypothyroidism in the context of NAFLD progression, with clinical annotations." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)