# Path Configuration from tools.preprocess import * # Processing context trait = "Hypothyroidism" cohort = "GSE75678" # Input paths in_trait_dir = "../DATA/GEO/Hypothyroidism" in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75678" # Output paths out_data_file = "./output/preprocess/3/Hypothyroidism/GSE75678.csv" out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE75678.csv" out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE75678.csv" json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Based on series title and summary indicating gene expression data # 2. Variable Availability and Data Type Conversion # Hypothyroidism data is in row 21 (personal pathological history) trait_row = 21 age_row = 19 # Age at diagnosis gender_row = 1 # Gender data is in row 1 def convert_trait(x): if pd.isna(x): return None val = x.split(': ')[1] if ': ' in x else x if 'Hypothyroidism' in val: return 1 return 0 def convert_age(x): if pd.isna(x): return None val = x.split(': ')[1] if ': ' in x else x try: return float(val) except: return None def convert_gender(x): if pd.isna(x): return None val = x.split(': ')[1] if ': ' in x else x if val.lower() == 'female': return 0 elif val.lower() == 'male': return 1 return None # 3. Save Metadata is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical Feature Extraction selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical data print(preview_df(selected_clinical)) selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # Looking at the row IDs, they appear to be simple numeric indices rather than gene symbols # This indicates we need to map these identifiers to actual gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Display non-NaN value counts for key gene identifier columns print("\nNumber of non-NaN values in key columns:") for col in ['GENE', 'GENE_SYMBOL', 'GENE_NAME']: print(f"{col}: {gene_metadata[col].notna().sum()}") # Preview rows with actual gene information print("\nPreview of rows with gene information:") gene_rows = gene_metadata[gene_metadata['GENE_SYMBOL'].notna()].head() print(json.dumps(preview_df(gene_rows), indent=2)) # Extract mapping between numeric IDs and gene symbols from annotation data mapping_df = get_gene_mapping(gene_metadata, 'ID', 'GENE_SYMBOL') # Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(genetic_data, mapping_df) # Preview the gene data shape print("Gene expression data shape:", gene_data.shape) # Preview first few gene symbols and samples print("\nFirst few gene symbols:", gene_data.index[:5].tolist()) print("\nFirst few samples:", gene_data.columns[:5].tolist()) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from breast cancer patients, with clinical annotations including hypothyroidism status." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)