# Path Configuration from tools.preprocess import * # Processing context trait = "Hypothyroidism" cohort = "GSE75685" # Input paths in_trait_dir = "../DATA/GEO/Hypothyroidism" in_cohort_dir = "../DATA/GEO/Hypothyroidism/GSE75685" # Output paths out_data_file = "./output/preprocess/3/Hypothyroidism/GSE75685.csv" out_gene_data_file = "./output/preprocess/3/Hypothyroidism/gene_data/GSE75685.csv" out_clinical_data_file = "./output/preprocess/3/Hypothyroidism/clinical_data/GSE75685.csv" json_path = "./output/preprocess/3/Hypothyroidism/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene expression data availability check # Study description suggests this is a breast cancer study with tumor samples # There is RNA concentration and quality data (RQI Experion) is_gene_available = True # 2.1 Data row identification trait_row = 21 # personal pathological history has 'Hypothyroidism' data age_row = 19 # 'age at diagnosis' gender_row = 1 # gender information # 2.2 Data type conversion functions def convert_trait(value): if pd.isna(value): return None value = value.split(': ')[-1] return 1 if value == 'Hypothyroidism' else 0 def convert_age(value): if pd.isna(value): return None try: age = int(value.split(': ')[-1]) return age except: return None def convert_gender(value): if pd.isna(value): return None value = value.split(': ')[-1].lower() if 'female' in value: return 0 elif 'male' in value: return 1 return None # 3. Save metadata about dataset usability validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=trait_row is not None ) # 4. Clinical feature extraction clinical_features = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save clinical features print("Preview of extracted clinical features:") print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # The row IDs are numerical indices, not gene symbols or other identifiers # Therefore, gene mapping will be required to convert these to meaningful gene symbols requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) print("\nPreview of first few rows:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Extract gene ID and gene symbol columns from annotation data mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') # Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview result print("\nPreview of first few genes and their expression values:") print(preview_df(gene_data)) # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(gene_data) genetic_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains gene expression data from breast cancer patients, with clinical annotations including hypothyroidism status." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)