# Path Configuration from tools.preprocess import * # Processing context trait = "Insomnia" cohort = "GSE208668" # Input paths in_trait_dir = "../DATA/GEO/Insomnia" in_cohort_dir = "../DATA/GEO/Insomnia/GSE208668" # Output paths out_data_file = "./output/preprocess/3/Insomnia/GSE208668.csv" out_gene_data_file = "./output/preprocess/3/Insomnia/gene_data/GSE208668.csv" out_clinical_data_file = "./output/preprocess/3/Insomnia/clinical_data/GSE208668.csv" json_path = "./output/preprocess/3/Insomnia/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # From background info, it's genome-wide transcriptional profiling of PBMCs # Though raw data was lost, it's still gene expression data is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability trait_row = 0 # 'insomnia' is in row 0 age_row = 1 # 'age' is in row 1 gender_row = 2 # 'gender' is in row 2 # 2.2 Data Type Conversion Functions def convert_trait(value: str) -> Optional[int]: if not isinstance(value, str): return None value = value.lower().split(": ")[-1].strip() if value == "yes": return 1 elif value == "no": return 0 return None def convert_age(value: str) -> Optional[float]: if not isinstance(value, str): return None try: age = float(value.split(": ")[-1].strip()) return age except: return None def convert_gender(value: str) -> Optional[int]: if not isinstance(value, str): return None value = value.lower().split(": ")[-1].strip() if value == "female": return 0 elif value == "male": return 1 return None # 3. Save Metadata - Initial Filtering is_trait_available = trait_row is not None initial_validation = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the processed data preview = preview_df(selected_clinical) print("Preview of processed clinical data:") print(preview) # Save to CSV selected_clinical.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) requires_gene_mapping = False # The gene identifiers are already in human gene symbol format. No mapping needed. # 1. Normalize gene symbols genetic_data = normalize_gene_symbols_in_index(genetic_data) genetic_data.to_csv(out_gene_data_file) # Get clinical features clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_features, genetic_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset contains genome-wide transcriptional profiling of PBMCs from older adults with and without insomnia disorder." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)