# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_Chromophobe" cohort = "GSE19949" # Input paths in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE19949" # Output paths out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE19949.csv" out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE19949.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE19949.csv" json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability is_gene_available = True # Based on background info mentioning "genome-wide expression profiling" # 2.1 Variable Key Identification trait_row = 4 # icd-o 3 diagnosis text gender_row = 6 # gender age_row = None # age not provided # 2.2 Data Type Conversion Functions def convert_trait(x): if pd.isna(x): return None val = x.split(': ')[-1].lower() if 'chromophobe' in val: return 1 elif 'renal cell carcinoma' in val or 'adenocarcinoma' in val: return 0 return None def convert_gender(x): if pd.isna(x): return None val = x.split(': ')[-1].lower() if 'female' in val: return 0 elif 'male' in val: return 1 return None # 3. Save Initial Metadata is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of extracted clinical features:") print(preview_df(selected_clinical_df)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # The identifiers appear to be Affymetrix probe IDs (e.g. "1007_s_at") rather than standard human gene symbols # Affymetrix IDs need to be mapped to gene symbols for biological interpretation requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # 1 & 2. Extract gene mapping information # From previewing data, 'ID' column matches probe IDs in expression data, 'Gene Symbol' contains target symbols mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol') # 3. Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Print info about the result print("Gene expression data shape after mapping:", gene_data.shape) print("\nFirst 10 gene symbols:") print(gene_data.index[:10].tolist()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)