# Path Configuration from tools.preprocess import * # Processing context trait = "Kidney_Chromophobe" cohort = "GSE19982" # Input paths in_trait_dir = "../DATA/GEO/Kidney_Chromophobe" in_cohort_dir = "../DATA/GEO/Kidney_Chromophobe/GSE19982" # Output paths out_data_file = "./output/preprocess/3/Kidney_Chromophobe/GSE19982.csv" out_gene_data_file = "./output/preprocess/3/Kidney_Chromophobe/gene_data/GSE19982.csv" out_clinical_data_file = "./output/preprocess/3/Kidney_Chromophobe/clinical_data/GSE19982.csv" json_path = "./output/preprocess/3/Kidney_Chromophobe/cohort_info.json" # Get file paths soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) # Get background info and clinical data background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) # Get unique values for each clinical feature unique_values_dict = get_unique_values_by_row(clinical_data) # Print background information print("Background Information:") print(background_info) print("\nSample Characteristics:") print(json.dumps(unique_values_dict, indent=2)) # 1. Gene Expression Data Availability # The background info shows this is mRNA profiling data (not miRNA/methylation) is_gene_available = True # 2.1 Data Availability and 2.2 Data Type Conversion # Trait: Key 0 has disease state info, binary classification of chromophobe RCC vs oncocytoma trait_row = 0 def convert_trait(value): if not isinstance(value, str): return None value = value.lower() if 'chromophobe' in value: return 1 # Chromophobe RCC is positive class elif 'oncocytoma' in value: return 0 # Oncocytoma is negative class return None # Age and gender not available in sample characteristics age_row = None gender_row = None def convert_age(value): return None def convert_gender(value): return None # 3. Save Metadata # is_trait_available is True since trait_row is not None is_trait_available = trait_row is not None validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available) # 4. Clinical Feature Extraction # Since trait_row is not None, we extract clinical features clinical_df = geo_select_clinical_features(clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender) # Preview and save clinical data print("Preview of clinical features:") print(preview_df(clinical_df)) # Create directory if doesn't exist os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) # Save clinical data clinical_df.to_csv(out_clinical_data_file) # Extract gene expression data from the matrix file genetic_data = get_genetic_data(matrix_file_path) # Print first 20 row IDs print("First 20 row IDs:") print(genetic_data.index[:20].tolist()) # These look like Affymetrix probe IDs rather than human gene symbols # Format is typical of Affymetrix arrays with numeric_at pattern requires_gene_mapping = True # Extract gene annotation data from SOFT file gene_metadata = get_gene_annotation(soft_file_path) # Display information about the annotation data print("Column names:") print(gene_metadata.columns.tolist()) # Look at general data statistics print("\nData shape:", gene_metadata.shape) # Preview the first few rows print("\nPreview of the annotation data:") print(json.dumps(preview_df(gene_metadata), indent=2)) # Extract gene mapping from annotation data # 'ID' column in annotation matches probe IDs in expression data # 'Gene Symbol' column contains the target gene symbols mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Gene Symbol') # Apply gene mapping to convert probe-level data to gene-level data gene_data = apply_gene_mapping(genetic_data, mapping_data) # Preview the results print("\nShape of probe data:", genetic_data.shape) print("Shape of gene data:", gene_data.shape) print("\nFirst 10 gene symbols:") print(gene_data.index[:10].tolist()) # 1. Normalize gene symbols gene_data = normalize_gene_symbols_in_index(gene_data) os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) gene_data.to_csv(out_gene_data_file) # 2. Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait) # Early exit if trait values are all NaN if linked_data[trait].isna().all(): is_biased = True linked_data = None else: # 4. Judge whether features are biased and remove biased demographic features is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final validation and save metadata note = "Dataset from a cancer gene expression study using oligonucleotide microarrays, containing samples of kidney chromophobe tumors and normal tissues." is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note=note ) # 6. Save the linked data only if it's usable if is_usable: os.makedirs(os.path.dirname(out_data_file), exist_ok=True) linked_data.to_csv(out_data_file)